Safe Experimentation Dynamics Algorithm for Identification of Cupping Suction Based on the Nonlinear Hammerstein Model

Kavindran Suresh, Mohd Riduwan Ghazali, Mohd Ashraf Ahmad

Abstract


The use of cupping therapy for various health benefits has increased in popularity recently. Potential advantages of cupping therapy include pain reduction, increased circulation, relaxation, and skin health. The increased blood flow makes it easier to supply nutrients and oxygen to the tissues, promoting healing. Nevertheless, the effectiveness of this technique greatly depends on the negative pressure's ability to create the desired suction effect on the skin. This research paper suggests a method to detect the cupping suction model by employing the Hammerstein model and utilizing the Safe Experimentation Dynamics (SED) algorithm. The problem is that the cupping suction system experiences pressure leaks and is difficult to control. Although, stabilizing the suction pressure and developing an effective controller requires an accurate model. The research contribution lies in utilizing the SED algorithm to tune the parameters of the Hammerstein model specifically for the cupping suction system and figure out the real system with a continuous-time transfer function. The experimental data collected for cupping therapy exhibited nonlinearity attributed to the complex dynamics of the system, presenting challenges in developing a Hammerstein model. This work used a nonlinear model to study the cupping suction system. Input and output data were collected from the differential pressure sensor for 20 minutes, sampling every 0.1 seconds. The single-agent method SED has limited exploration capabilities for finding optimum value but excels in exploitation. To address this limitation, incorporating initial values leads to improved performance and a better match with the real experimental observations. Experimentation was conducted to find the best model parameters for the desired suction pressure. The therapy can be administered with greater precision and efficacy by accurately identifying the suction pressure. Overall, this research represents a promising development in cupping therapy. In particular, it has been demonstrated that the proposed nonlinear Hammerstein models improve accuracy by 84.34% through the tuning SED algorithm.

Keywords


Cupping Suction; Identification; Nonlinear Model; Hammerstein Model; Safe Experimentation Dynamics.

Full Text:

PDF

References


M. Moghimi, G. Kordafshari, and H. M. Kenari, “Comment on the article ‘cupping therapy: An overview from a modern medicine perspective’: The complications of cupping are preventable,” JAMS J. Acupunct. Meridian Stud., vol. 14, no. 1, pp. 1–2, 2021, doi: 10.51507/j.jams.2021.14.1.1.

S. Majeed, M. Majeed, and M. A. Ajike, “Dry cupping therapy and the wellness management of health travelers Modernization of Traditional Medicine,” Tradit. Med. Res., vol. 4, no. 1, pp. 12–24, 2019, doi: 10.12032/TMR201915095.

A. Kaya, L. Taşdemir, and Y. Çayir, “Cupping Therapy and Scientific Basics,” Int. J. Tradit. Complement. Med. Res., vol. 3, no. 3, pp. 197–200, 2022, doi: 10.53811/ijtcmr.1147126.

U. Hani and M. Saleem, "Review on cupping therapy (al-hijama): A miraculous alternative system of medicine, which is an unbeatable cure for all ailments," Journal of Pharmacognosy and Phytochemistry, vol. 8, no. 2, pp. 2406–2414, 2019.

T. Boehland, A. D. Montgomery, and M. Mortenson, “Combination Acupuncture and Cupping for Treating Adult Idiopathic Scoliosis,” Med. Acupunct., vol. 32, no. 4, pp. 229–233, 2020, doi: 10.1089/acu.2020.1411.

P. Zhou, W. Xie, and P. Zheng, “Brief introduction to the historical development and therapeutic effects of cupping therapy in traditional Chinese medicine,” TMR Non-Drug Ther., vol. 2, no. 1, p. 27, 2019, doi: 10.53388/tmrnd201902006.

S. Ersoy and A. R. Benli, “Continue or stop applying wet cupping therapy (al-hijamah) in migraine headache:A randomized controlled trial,” Complement. Ther. Clin. Pract., vol. 38, p. 101065, 2020, doi: 10.1016/j.ctcp.2019.101065.

Z. M. Shafie, W. Widada, N. Azlina, A. Bakar, and N. F. Abdullah, "Reduce Headache Levels with Cupping Therapy Methods in Hypertensive Patients," in International Health Conference STIKes Panca Bhakti (IHCPB), vol. 1 no. 1, pp. 118–130, 2023.

N. Kıanı et al., “Cupping therapy combined with conventional physical therapy improves pain and health related quality of life among female patients with low back pain,” J. Exp. Clin. Med., vol. 39, no. 4, pp. 948–953, 2022, doi: 10.52142/omujecm.39.4.5.

M. W. Akhtar, “Ḥijāmah (Cupping Therapy): Special Reference to Neuromuscular Disorders,” Chettinad Heal. City Med. J., vol. 11, no. 4, pp. 86–91, 2022, doi: 10.24321/2278.2044.202244.

M. Pasaribu, “Complementary cupping effectively lowers blood pressure in hypertension,” Sci. Midwifery, vol. 11, no. 2, pp. 396-405, 2023, doi: https://doi.org/10.35335/midwifery.v11i2.1293.

S. Kim et al., “Is cupping therapy effective in patients with neck pain? A systematic review and meta-analysis,” BMJ Open, vol. 8, no. 11, pp. 1–13, 2018, doi: 10.1136/bmjopen-2017-021070.

Y. Yang et al., “Comparative pilot study on the effects of pulsating and static cupping on non-specific neck pain and local skin blood perfusion,” J. Tradit. Chinese Med. Sci., vol. 5, no. 4, pp. 400–410, 2018, doi: 10.1016/j.jtcms.2018.09.001.

S. L. Stephens, N. M. Selkow, and N. L. Hoffman, “Dry cupping therapy for improving nonspecific neck pain and subcutaneous hemodynamics,” J. Athl. Train., vol. 55, no. 7, pp. 682–690, 2020, doi: 10.4085/1062-6050-236-19.

W. C. Shen et al., “Effectiveness of self-management of dry and wet cupping therapy for low back pain: A systematic review and meta-analysis,” Med. (United States), vol. 101, no. 51, 2022, doi: 10.1097/MD.0000000000032325.

H. M. Kenari, G. Kordafshari, and M. Moghimi, “The Effectiveness of Cupping in Iranian Researches: A Systematic Review of Animal and Human Studies,” Tradit. Integr. Med., vol. 7, no. 1, pp. 135–149, 2022, doi: 10.18502/tim.v7i1.9070.

K. E. Sharquie and F. A. Al-Jaralla, “Cupping (Hijama) in Skin diseases with positive Koebner’s Phenomenon: What is New?,” J. Clin. Exp. Investig., vol. 10, no. 3, p. em00726, 2019, doi: 10.5799/jcei/5856.

H. Cao et al., “Clinical research evidence of cupping therapy in China: A systematic literature review,” BMC Complement. Altern. Med., vol. 10, 2010, doi: 10.1186/1472-6882-10-70.

T. Aboushanab and M. Ravalia, “Genetic Theory: An Illustration of a Theoretical Mechanism of Acton of Cupping Therapy,” Med. Theory Hypothesis, vol. 6, no. 1, p. 06, 2023, doi: 10.53388/tmrth202303006.

N. Shaikh and H. Alam, “Effect of Hijama ( Wet Cupping Therapy ) In Sciatica Pain Management,” Int. J. Adv. Heal. Sci., vol. 7, no. 4, pp. 1–7, 2020.

S. Mohammadi, M. M. Roostayi, S. S. Naimi, and A. A. Baghban, “The effects of cupping therapy as a new approach in the physiotherapeutic management of carpal tunnel syndrome,” Physiother. Res. Int., vol. 24, no. 3, p. e1770, 2019, doi: 10.1002/pri.1770.

M. Xing et al., “Effects of moving cupping therapy for plaque psoriasis: Study protocol for a randomized multicenter clinical trial,” Trials, vol. 21, no. 1, pp. 1–9, 2020, doi: 10.1186/s13063-020-4155-0.

M. Teut et al., “Pulsatile dry cupping in chronic low back pain - A randomized three-armed controlled clinical trial,” BMC Complement. Altern. Med., vol. 18, no. 1, pp. 1–9, Apr. 2018, doi: 10.1186/s12906-018-2187-8.

A. M. N. Al-Bedah et al., “The medical perspective of cupping therapy: Effects and mechanisms of action,” J. Tradit. Complement. Med., vol. 9, no. 2, pp. 90–97, 2019, doi: 10.1016/j.jtcme.2018.03.003.

H. Guo et al., “The effectiveness of cupping therapy on chronic fatigue syndrome: A single-blind randomized controlled trial,” Complement. Ther. Clin. Pract., vol. 40, p. 101210, 2020, doi: 10.1016/j.ctcp.2020.101210.

H. Mukhlis, N. Sefa, A. Hermawan, J. Purwono, and D. A. Wahyudi, “Cupping Therapy for Hypertensive Patiens : A quasi-Experimental Research,” Journal of Critical Reviews, vol. 7, no. 14, pp. 1437–1443, 2020, doi: 10.31838/jcr.07.14.326.

M. Alam, “The Role of Cupping Therapy (CT) In Pain Tackling, an Insight into Mechanism Therapeutic Effects and its Relevance in Current Medical Scenario,” Int. J. Curr. Sci. Res. Rev., vol. 4, no. 7, 2021, doi: 10.47191/ijcsrr/v4-i7-16.

X. Wang, X. Zhang, J. Elliott, F. Liao, J. Tao, and Y. K. Jan, “Effect of Pressures and Durations of Cupping Therapy on Skin Blood Flow Responses,” Front. Bioeng. Biotechnol., vol. 8, pp. 1–7, 2020, doi: 10.3389/fbioe.2020.608509.

A. Al-Shidhani and A. Al-Mahrezi. The Role of Cupping Therapy in Pain Management: A Literature Review. Pain Management - Practices, Novel Therapies and Bioactives, IntechOpen, 2021.

Z. Liu et al., “Is cupping blister harmful?—A proteomical analysis of blister fluid induced by cupping therapy and scald,” Complement. Ther. Med., vol. 36, pp. 25–29, 2018, doi: 10.1016/j.ctim.2017.11.002.

H. V. Kouser, M. Nayab, A. Tehseen, S. Mahfooz, B. Ruqaiyya, and M. Anwar, "Evidence-based therapeutic benefits of cupping therapy (Ḥijāma): A comprehensive review," Journal of Drug Delivery and Therapeutics, vol. 11, no. 4-S, pp. 258-262. 2021, .

M. El-Shanshory et al., “Al-hijamah (Wet cupping therapy of prophetic medicine) significantly and safely reduces iron overload and oxidative stress in thalassemic children: A novel pilot study,” J. Blood Med., vol. 9, pp. 241–251, 2018, doi: 10.2147/JBM.S170523.

M. Vaccaro, M. Coppola, M. Ceccarelli, M. Montopoli, and C. Guarneri, “The good and the bad of cupping therapy: Case report and review of the literature,” European Review for Medical and Pharmacological Sciences, vol. 25, no. 5, pp. 2327–2330, 2021, doi: 10.26355/eurrev_202103_25266.

L. Yingxiang, L. Xiaohui, L. Yun, C. Huilin, and Y. Jianjun, “Design and Implementation of Multi-tank Wireless Control Automatic Cupping Device,” Proc. - 2021 14th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2021, pp. 1–5, 2021, doi: 10.1109/CISP-BMEI53629.2021.9624413.

M. R. Ghazali, M. Ashraf Ahmad, Y. T. Hui, N. Aimi Najwa Shamsudin, and W. I. Ibrahim, “Cupping Suction System with Fuzzy Logic Controller Design,” 2022 IEEE 10th Conf. Syst. Process Control. ICSPC 2022 - Proc., no. December, pp. 23–28, 2022, doi: 10.1109/ICSPC55597.2022.10001794.

Y. Naung, A. Schagin, H. L. Oo, K. Z. Ye, and Z. M. Khaing, “Implementation of data driven control system of DC motor by using system identification process,” Proc. 2018 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2018, vol. 2018-Janua, pp. 1801–1804, 2018, doi: 10.1109/EIConRus.2018.8317455.

J. M. Louw and H. W. Jordaan, “Data-Driven System Identification and Model Predictive Control of a Multirotor with an Unknown Suspended Payload,” IFAC-PapersOnLine, vol. 54, no. 21, pp. 210–215, 2021, doi: 10.1016/j.ifacol.2021.12.036.

Z. Wang, L. Fan, and Z. Miao, “Data-Driven Dynamic Model Identification for Synchronous Generators,” 51st North Am. Power Symp. NAPS 2019, pp. 2–7, 2019, doi: 10.1109/NAPS46351.2019.9000184.

Y. Choudhary, N. Malhotra, P. K. Sahoo, and S. Kamal, “Data-driven modeling of a track-based stair-climbing wheelchair,” IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, pp. 1000–1005, 2021, doi: 10.1109/AIM46487.2021.9517494.

S. Santhakumaran, Y. A. W. Shardt, J. Rejek, and C. Maul, “Data-driven nonlinear system identification of a closed-loop CSTR,” MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modellin, pp. 29–30, 2022, doi: 10.11128/arep.17.a17076.

A. Babin, “Data-driven system identification and optimal control of an active rotor-bearing system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1047, no. 1, 2021, doi: 10.1088/1757-899X/1047/1/012053.

P. Huang, Z. Li, Y. Zhu, C. Wen, and F. Corman, “Train traffic control in merging stations: A data-driven approach,” Transp. Res. Part C Emerg. Technol., vol. 152, p. 104155, 2023, doi: 10.1016/j.trc.2023.104155.

D. L. Fernandes, F. R. Lopes, A. W. C. Do Lago, D. H. B. De Sousa, M. A. Meggiolaro, and H. V. H. Ayala, “System Identification of an elastomeric series elastic actuator using black-box models,” 2023 31st Mediterr. Conf. Control Autom., pp. 569–574, 2023, doi: 10.1109/MED59994.2023.10185853.

L. Yang, H. Wang, and Y. Yang, “Modeling and control of ionic polymer metal composite actuators: A review,” European Polymer Journal, vol. 111821, 2023, doi: 10.1016/j.eurpolymj.2023.111821.

S. L. Chavan and D. B. Talange, “System identification black box approach for modeling performance of PEM fuel cell,” J. Energy Storage, vol. 18, pp. 327–332, 2018, doi: 10.1016/j.est.2018.05.014.

D. Yu, Y. Wang, H. Liu, K. Jermsittiparsert, and N. Razmjooy, “System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm,” Energy Reports, vol. 5, pp. 1365–1374, 2019, doi: 10.1016/j.egyr.2019.09.039.

T. Khaled and M. Boumehraz, “Black-Box System Identification for Low-Cost Quadrotor Attitude at Hovering,” EEA - Electroteh. Electron. Autom., vol. 70, no. 4, pp. 88–97, 2022, doi: 10.46904/eea.22.70.4.1108009.

G. Rojas-Duenas, J. R. Riba, and M. Moreno-Eguilaz, “Black-Box Modeling of DC-DC Converters Based on Wavelet Convolutional Neural Networks,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2021.3098377.

B. H. Rambe et al., “UML Modeling and Black Box Testing Methods in the School Payment Information System,” J. Mantik, vol. 4, no. 3, pp. 1634–1640, 2020, doi: https://doi.org/10.35335/mantik.Vol4.2020.969.pp1634-1640.

J. Kenanian, A. Balkan, R. M. Jungers, and P. Tabuada, “Data driven stability analysis of black-box switched linear systems,” Automatica, vol. 109, p. 108533, 2019, doi: 10.1016/j.automatica.2019.108533.

E. H. Kadhim and A. T. Abdulsadda, “Mini Drone Linear and Nonlinear Controller System Design and Analyzing,” J. Robot. Control, vol. 3, no. 2, pp. 212–218, 2022, doi: 10.18196/jrc.v3i2.14180.

K. Mehmood et al., “Nonlinear Hammerstein System Identification: A Novel Application of Marine Predator Optimization Using the Key Term Separation Technique,” Mathematics, vol. 10, no. 22, 2022, doi: 10.3390/math10224217.

V. Prasad and U. Mehta, “Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional differential equations,” Mech. Syst. Signal Process., vol. 167, p. 108568, 2022, doi: 10.1016/j.ymssp.2021.108568.

Q. Zhang, H. Wang, and C. Liu, “Identification of fractional-order Hammerstein nonlinear ARMAX system with colored noise,” Nonlinear Dyn., vol. 106, no. 4, pp. 3215–3230, 2021, doi: 10.1007/s11071-021-06925-y.

J. Hou, F. Chen, P. Li, L. Sun, and F. Zhao, “Recursive Parsimonious Subspace Identification for Closed-Loop Hammerstein Nonlinear Systems,” IEEE Access, vol. 7, pp. 173515–173523, 2019, doi: 10.1109/ACCESS.2019.2953126.

R. Quachio and C. Garcia, “MPC relevant identification method for Hammerstein and Wiener models,” J. Process Control, vol. 80, pp. 78–88, 2019, doi: 10.1016/j.jprocont.2019.01.011.

S. Lu and S. Jingzhuo, “Nonlinear Hammerstein model of ultrasonic motor for position control using differential evolution algorithm,” Ultrasonics, vol. 94, pp. 20–27, 2019, doi: 10.1016/j.ultras.2018.12.012.

M. K. Abdelhamid, M. A. Mossa, and A. A. Hassan, “Optimizing the Dynamic Performance of a Wind Driven Standalone DFIG Using an Advanced Control Algorithm,” J. Robot. Control, vol. 3, no. 5, pp. 633–645, 2022, doi: 10.18196/jrc.v3i5.16046.

H. Liang, J. Zou, K. Zuo, and M. J. Khan, “An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system,” Mech. Syst. Signal Process., vol. 142, p. 106708, 2020, doi: 10.1016/j.ymssp.2020.106708.

N. El Gmili, M. Mjahed, A. El Kari, and H. Ayad, “Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach,” Comput. Intell. Neurosci., vol. 2019, 2019, doi: 10.1155/2019/8925165.

B. Hekimoğlu, “Sine-cosine algorithm-based optimization for automatic voltage regulator system,” Trans. Inst. Meas. Control, vol. 41, no. 6, pp. 1761–1771, 2019, doi: 10.1177/0142331218811453.

J. J. Jui, M. H. Suid, M. R. Ghazali, M. A. Ahmad, and M. Z. M. Tumari, “Modified Sine Cosine Algorithm for Identification of Liquid Slosh based on Continuous-time Hammerstein Model,” J. Phys. Conf. Ser., vol. 1529, no. 4, 2020, doi: 10.1088/1742-6596/1529/4/042090.

K. Suresh, M. R. Ghazali, and M. Ashraf Ahmad, “Modelling of Cupping Suction System based on System Identification Method,” 2022 IEEE 10th Conf. Syst. Process Control. ICSPC 2022 - Proc., pp. 18–22, 2022, doi: 10.1109/ICSPC55597.2022.10001786.

E. F. Junis, J. J. Jui, M. H. Suid, and M. A. Ahmad, “Identification of Continuous-time Hammerstein System using Sine Cosine Algorithm,” 2019 IEEE 6th Int. Conf. Smart Instrumentation, Meas. Appl. ICSIMA 2019, pp. 27–29, 2019, doi: 10.1109/ICSIMA47653.2019.9057299.

M. R. Ghazali, M. A. Ahmad, and R. M. T. R. Ismail, “Data-Driven PID Control for DC/DC Buck-Boost Converter-Inverter-DC Motor based on Safe Experimentation Dynamics,” Proc. - 2018 IEEE Conf. Syst. Process Control. ICSPC 2018, pp. 89–93, 2019, doi: 10.1109/SPC.2018.8704161.

M. A. Ahmad, H. Ishak, A. N. K. Nasir, and N. A. Ghani, “Data-based PID control of flexible joint robot using adaptive safe experimentation dynamics algorithm,” Bull. Electr. Eng. Informatics, vol. 10, no. 1, pp. 79–85, 2021, doi: 10.11591/eei.v10i1.2472.

M. R. bin Ghazali, M. A. bin Ahmad, and R. M. T. bin Raja Ismail, “Adaptive Safe Experimentation Dynamics for Data-Driven Neuroendocrine-PID Control of MIMO Systems,” IETE J. Res., vol. 68, no. 3, pp. 1611–1624, 2022, doi: 10.1080/03772063.2019.1656556.

N. S. A. Shukor, M. A. Ahmad, and M. Z. M. Tumari, "Data-driven PID tuning based on safe experimentation dynamics for control of liquid slosh," 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), pp. 62-66, 2017, doi: 10.1109/ICSGRC.2017.8070569.

N. S. A. Shukor and M. A. Ahmad, “Data-driven PID tuning based on safe experimentation dynamics for control of double-pendulum-type overhead crane,” Lect. Notes Mech. Eng., no. 9789811087875, pp. 295–303, 2018, doi: 10.1007/978-981-10-8788-2_27.

M. F. Farhan, N. S. A. Shukor, M. A. Ahmad, M. H. Suid, M. R. Ghazali, and M. M. Jusof, “A simplify fuzzy logic controller design based safe experimentation dynamics for pantograph-cateary system,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 2, pp. 903–911, 2019, doi: 10.11591/ijeecs.v14.i2.pp903-911.

M. R. Ghazali, M. A. Ahmad, M. F. M. Jusof, and R. M. T. R. Ismail, “A data-driven neuroendocrine-PID controller for underactuated systems based on safe experimentation dynamics,” Proc. - 2018 IEEE 14th Int. Colloq. Signal Process. its Appl. CSPA 2018, pp. 61–66, 2018, doi: 10.1109/CSPA.2018.8368686.

T. Lupinski, M. Ludwig, S. Fraden, and N. Tompkins, “An Arduino-based constant pressure fluid pump,” Eur. Phys. J. E, vol. 44, no. 2, pp. 1–7, 2021, doi: 10.1140/epje/s10189-020-00002-9.

J. Zhu, H. Sun, X. Liu, Z. Sun, and Z. Lei, “Theoretical and experimental research on a new defrosting control strategy based on differential pressure sensor,” Int. J. Refrig., vol. 143, pp. 11–18, 2022, doi: 10.1016/j.ijrefrig.2022.06.031.

C. Meurer, J. F. F-. Perez, N. Palomeras, M. Carreras, and M. Kruusmaa, “Differential Pressure Sensor Speedometer for Autonomous Underwater Vehicle Velocity Estimation,” IEEE J. Ocean. Eng., vol. 45, no. 3, pp. 946–978, 2020, doi: 10.1109/JOE.2019.2907822.

T. F. Duarte, T. J. A. da Silva, E. M. Bonfim-Silva, and M. Koetz, “Using Arduino sensors to monitor vacuum gauge and soil water moisture,” DYNA, vol. 88, no. 219, pp. 190–196, 2021, doi: 10.15446/dyna.v88n219.94121.

A. Hiwale and U. Chaskar, “Design and Development of IOT based Blood Pressure Measurement system,” 2022 13th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2022, pp. 1–5, 2022, doi: 10.1109/ICCCNT54827.2022.9984292.

S. Onorati, F. Semproni, L. Paternò, G. Casagrande, V. Iacovacci, and A. Menciassi, "A hydraulic soft robotic detrusor based on an origami design," 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 6817-6822, 2023, doi: 10.1109/ICRA48891.2023.10160652.

O. S. Abbadi, “The Use of Negative Pressure in Medicine,” Int. J. Clin. Exp. Physiol., vol. 7, no. 3, pp. 91–95, 2020, doi: 10.5530/ijcep.2020.7.3.23.

K. W. Kim et al., “Pressure Levels in Cupping Therapy: A Systemic Review,” J. Acupunct. Res., vol. 37, no. 1, pp. 28–34, 2020, doi: 10.13045/jar.2019.00339.

J. Y. Lee, D. W. Shim, S. K. An, E. S. Kim, B. R. Lee, and G. Y. Yang, “Developing a Pressure Control Valve for Air Extraction Cupping Device,” Korean J. Acupunct., vol. 38, no. 4, pp. 308–316, 2021, doi: 10.14406/acu.2021.032.

S. Cheng, Y. Wei, D. Sheng, and Y. Wang, “Identification for Hammerstein nonlinear systems based on universal spline fractional order LMS algorithm,” Commun. Nonlinear Sci. Numer. Simul., vol. 79, p. 104901, 2019, doi: 10.1016/j.cnsns.2019.104901.

S. Lu and S. Jingzhuo, “Nonlinear Hammerstein model of ultrasonic motor for position control using differential evolution algorithm,” Ultrasonics, vol. 94, pp. 20–27, 2019, doi: 10.1016/j.ultras.2018.12.012.




DOI: https://doi.org/10.18196/jrc.v4i6.18909

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 KAVINDRAN SURESH, Mohd Riduwan Ghazali, Mohd Ashraf Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik