Path Planning and Trajectory Tracking Control for Two-Wheel Mobile Robot

Ibrahim A. Hassan, Issa A. Abed, Walid A. Al-Hussaibi

Abstract


The mobile robot is a system that can work in various environments. This means that the robot must be able to navigate without delay and avoid any obstacles placed within the boundaries of its movement. Designing mobile robots that can be intelligently managed and operate autonomously when traveling from one place to another requires at least two steps. To start with, path planning is required to prevent motion collisions. Tracking the robot's trajectory is a crucial second task. The primary goal of this study is to find the quickest and safest path between the two positions. In this work, we investigated the path planning of a mobile robot with dynamic, and dynamic obstacles with moving goal environments using RRT, BiRRT, and HA* algorithms. These algorithms are easy, computationally inexpensive, and simple to use. They have been chosen for numerous real-time path-planning applications. The DDMR's kinematic model has been utilized in this paper to control path tracking, and a PID controller has been proposed to reduce tracking deviations between the robot's actual route and the reference trajectory. This work introduced the PSO, FPA, CSA, SSA, BWOA, and proposed HBPO optimization techniques for obtaining PID parameters (k_p,k_i,k_d) for improved mobile robot trajectory tracking. The simulation results have been examined using three trajectory shapes: step, circular, and infinite. The simulation findings reveal that HA* outperforms the other algorithms by generating collision-free pathways that are smoother and shorter than their RRT and BiRRT equivalents. On the other hand, the proposed HBPO outperforms the other methods. The HBPO method converges quicker than the other proposed algorithms.


Keywords


Mobile Robot; Path Planning; Trajectory Tracking; PID Controller.

Full Text:

PDF

References


M. A. K. Niloy et al., “Critical Design and Control Issues of Indoor Autonomous Mobile Robots: A Review,” IEEE Access, vol. 9, pp. 35338–35370, 2021, doi: 10.1109/ACCESS.2021.3062557.

A. M. Alshorman, O. Alshorman, M. Irfan, A. Glowacz, F. Muhammad, and W. Caesarendra, “Fuzzy-based fault-tolerant control for omnidirectional mobile robot,” Machines, vol. 8, no. 3, pp. 2–20, Sep. 2020, doi: 10.3390/MACHINES8030055.

H. Y. Zhang, W. M. Lin, and A. X. Chen, “Path planning for the mobile robot: A review,” Symmetry (Basel)., vol. 10, no. 10, pp. 2–17, 2018, doi: 10.3390/sym10100450.

F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts, methods, theoretical framework, and applications,” Int. J. Adv. Robot. Syst., vol. 16, no. 2, pp. 1–22, 2019, doi: 10.1177/1729881419839596.

G. Ren, T. Lin, Y. Ying, G. Chowdhary, and K. C. Ting, “Agricultural robotics research applicable to poultry production: A review,” Comput. Electron. Agric., vol. 169, p. 105216, 2020, doi: 10.1016/j.compag.2020.105216.

D. Patil, M. Ansari, D. Tendulkar, R. Bhatlekar, V. N. Pawar, and S. Aswale, “A Survey on Autonomous Military Service Robot,” Int. Conf. Emerg. Trends Inf. Technol. Eng. ic-ETITE 2020, pp. 1–7, 2020, doi: 10.1109/ic-ETITE47903.2020.78.

S. G. Tzafestas, “Mobile Robot Control and Navigation: A Global Overview,” Journal of Intelligent & Robotic Systems, vol. 91, pp. 35-58,‏ 2018.

M. B. Alatise and G. P. Hancke, “A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods,” IEEE Access, vol. 8, pp. 39830–39846, 2020, doi: 10.1109/ACCESS.2020.2975643.

S. Pudaruth, U. G. Singh, Institute of Electrical and Electronics Engineers. South African Section, and Institute of Electrical and Electronics Engineers, 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD) : conference proceedings : 6-7 August 2020, Durban, KwaZulu Natal, South Africa.

M. N. A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A comparative review on mobile robot path planning: Classical or meta-heuristic methods?,” Annu. Rev. Control, vol. 50, pp. 233–252, 2020, doi: 10.1016/j.arcontrol.2020.10.001.

M. T. Saeed and J. Pan, “An Intelligent Hybrid Control to Enhance Applicability of Mobile Robots in Cluttered Environments,” IEEE Access, vol. 9, pp. 50151–50162, 2021, doi: 10.1109/ACCESS.2021.3068988.

S. Campbell, N. O'Mahony, A. Carvalho, L. Krpalkova, D. Riordan, and J. Walsh, “Path planning techniques for mobile robots a review,” in 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE), pp. 12-16, 2020.

M. N. Zafar and J. C. Mohanta, “Methodology for Path Planning and Optimization of Mobile Robots: A Review,” in Procedia Computer Science, vol. 133, pp. 141–152, 2018.

T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches in robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp. 13-28‏, 2016, doi: 10.1016/j.robot.2016.08.001.

B. Wang, Z. Liu, Q. Li, and A. Prorok, "Mobile Robot Path Planning in Dynamic Environments Through Globally Guided Reinforcement Learning," in IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6932-6939, Oct. 2020, doi: 10.1109/LRA.2020.3026638.

R. Abiyev, D. Ibrahim, and B. Erin, “Navigation of mobile robots in the presence of obstacles,” Adv. Eng. Softw., vol. 41, no. 10–11, pp. 1179–1186, 2010, doi: 10.1016/j.advengsoft.2010.08.001.

D. B. H. Abid, N. Y. Allagui, and N. Derbel, “Navigation and trajectory tracking of mobile robot based on kinematic PI controller,” in 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 252-256, 2017.

Y. Yan and Y. Li, “Mobile robot autonomous path planning based on fuzzy logic and filter smoothing in dynamic environment,” in 2016 12th World congress on intelligent control and automation (WCICA), pp. 1479-1484, 2016.

M. Saraswathi, G. B. Murali, and B. B. V. L. Deepak, “Optimal Path Planning of Mobile Robot Using Hybrid Cuckoo Search-Bat Algorithm,” Procedia Comput. Sci., vol. 133, pp. 510–517, 2018, doi: 10.1016/j.procs.2018.07.064.

S. Choueiry, M. Owayjan, H. Diab, and R. Achkar, “Mobile robot path planning using genetic algorithm in a static environment,” in 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), pp. 1-6, 2019.

S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Liu, “Obstacle avoidance of mobile robots using modified artificial potential field algorithm,” Eurasip J. Wirel. Commun. Netw., vol. 2019, no. 1, 2019, doi: 10.1186/s13638-019-1396-2.

J. Zhang, “Path planning for a mobile robot in unknown dynamic environments using integrated environment representation and reinforcement learning,” 2019 Aust. New Zeal. Control Conf. ANZCC 2019, pp. 258–263, 2019, doi: 10.1109/ANZCC47194.2019.8945595.

R. K. Mandava, S. Bondada, and P. R. Vundavilli, “An optimized path planning for the mobile robot using potential field method and PSO algorithm,” in Soft Computing for Problem Solving: SocProS 2017, vol. 2, pp. 139-150, 2019, doi: 10.1007/978-981-13-1595-4.

X. Zhong, J. Tian, H. Hu, and X. Peng, “Hybrid Path Planning Based on Safe A* Algorithm and Adaptive Window Approach for Mobile Robot in Large-Scale Dynamic Environment,” J. Intell. Robot. Syst. Theory Appl., vol. 99, no. 1, pp. 65–77, 2020, doi: 10.1007/s10846-019-01112-z.

S. K. Das, K. Roy, T. Pandey, A. Kumar, A. K. Dutta, and S. K. Debnath, “Modified Critical Point - A Bug Algorithm for Path Planning and Obstacle Avoiding of Mobile Robot,” Proc. 2020 IEEE Int. Conf. Commun. Signal Process. ICCSP 2020, pp. 351–356, 2020, doi: 10.1109/ICCSP48568.2020.9182347.

D. Connell and H. Manh La, “Extended rapidly exploring random tree–based dynamic path planning and replanning for mobile robots,” Int. J. Adv. Robot. Syst., vol. 15, no. 3, pp. 1–15, 2018, doi: 10.1177/1729881418773874.

P. Zhang, C. Xiong, W. Li, X. Du, and C. Zhao, “Path planning for mobile robot based on modified rapidly exploring random tree method and neural network,” Int. J. Adv. Robot. Syst., vol. 15, no. 3, pp. 1–8, 2018, doi: 10.1177/1729881418784221.

H. Liu, X. Zhang, J. Wen, R. Wang, and X. Chen, “Goal-biased Bidirectional RRT based on Curve-smoothing,” IFAC-PapersOnLine, vol. 52, no. 24, pp. 255–260, 2019, doi: 10.1016/j.ifacol.2019.12.417.

S. Sedighi, D. Van Nguyen, and K. D. Kuhnert, “Guided Hybrid A-star Path Planning Algorithm for Valet Parking Applications,” 2019 5th Int. Conf. Control. Autom. Robot. ICCAR 2019, pp. 570–575, 2019, doi: 10.1109/ICCAR.2019.8813752.

X. Tang and F. Chen, “Robot Path Planning Algorithm based on Bi-RRT and Potential Field,” 2020 IEEE Int. Conf. Mechatronics Autom. ICMA 2020, pp. 1251–1256, 2020, doi: 10.1109/ICMA49215.2020.9233539.

Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-RRT: A RRT-based optimal path finding method,” Appl. Sci., vol. 11, no. 24, 2021, doi: 10.3390/app112411777.

M. Medvedev, V. Pshikhopov, B. Gurenko, and N. Hamdan, “Path planning method for mobile robot with maneuver restrictions,” in 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1-7, 2021, doi: 10.1109/ICECCME52200.2021.9591090.

Z. Zhang, Y. Wan, Y. Wang, X. Guan, W. Ren, and G. Li, “Improved hybrid A* path planning method for spherical mobile robot based on pendulum,” Int. J. Adv. Robot. Syst., vol. 18, no. 1, pp. 1–14, 2021, doi: 10.1177/1729881421992958.

W. Sheng, B. Li, and X. Zhong, “Autonomous Parking Trajectory Planning with Tiny Passages: A Combination of Multistage Hybrid A-Star Algorithm and Numerical Optimal Control,” IEEE Access, vol. 9, pp. 102801–102810, 2021, doi: 10.1109/ACCESS.2021.3098676.

C. Van Dang, H. Ahn, D. S. Lee, and S. C. Lee, “Improved Analytic Expansions in Hybrid A-Star Path Planning for Non-Holonomic Robots,” Appl. Sci., vol. 12, no. 12, pp. 1–11, 2022, doi: 10.3390/app12125999.

A. Alouache and Q. Wu, “Genetic algorithms for trajectory tracking of mobile robot based on PID controller,” Proc. - 2018 IEEE 14th Int. Conf. Intell. Comput. Commun. Process. ICCP 2018, pp. 237–241, 2018, doi: 10.1109/ICCP.2018.8516587.

N. P. Varma, A. Vivek, and V. R. Pandi, “Target tracking, path planning and obstacle avoidance by intelligent robot,” in 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-6, 2017.

J. Campos, S. Jaramillo, L. Morales, O. Camacho, D. Chávez, and D. Pozo, “PSO tuning for fuzzy PD+ I controller applied to a mobile robot trajectory control,” in 2018 International Conference on Information Systems and Computer Science (INCISCOS), pp. 62-68, 2018.

L. A. Yekinni and A. Dan-isa, “Fuzzy Logic Control of Goal-Seeking 2-Wheel Differential Mobile Robot Using Unicycle Approach,” 2019 IEEE Int. Conf. Autom. Control Intell. Syst., pp. 300–304, 2019.

I. Hassani, I. Maalej, and C. Rekik, “Control points searching algorithm for autonomous mobile robot navigation with obstacle avoidance,” 19th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2019, no. 1, pp. 158–163, 2019, doi: 10.1109/STA.2019.8717220.

M. Dirik, A. F. Kocamaz, and O. Castillo, “Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor,” Int. J. Fuzzy Syst., vol. 22, no. 6, pp. 1880–1891, 2020, doi: 10.1007/s40815-020-00888-9.

S. Wang, X. Yin, P. Li, M. Zhang, and X. Wang, “Trajectory Tracking Control for Mobile Robots Using Reinforcement Learning and PID,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 44, no. 3, pp. 1059–1068, 2020, doi: 10.1007/s40998-019-00286-4.

N. H. Thai, T. T. K. Ly, H. Thien, and L. Q. Dzung, “Trajectory Tracking Control for Differential-Drive Mobile Robot by a Variable Parameter PID Controller,” Int. J. Mech. Eng. Robot. Res., vol. 11, no. 8, pp. 614–621, 2022, doi: 10.18178/ijmerr.11.8.614-621.

N. Hassan and A. Saleem, “Neural Network-Based Adaptive Controller for Trajectory Tracking of Wheeled Mobile Robots,” IEEE Access, vol. 10, pp. 13582–13597, 2022, doi: 10.1109/ACCESS.2022.3146970.

A. Stefek, T. van Pham, V. Krivanek, and K. L. Pham, “Energy comparison of controllers used for a differential drive wheeled mobile robot,” IEEE Access, vol. 8, pp. 170915–170927, 2020, doi: 10.1109/ACCESS.2020.3023345.

N. Leena and K. K. Saju, “Modelling and Trajectory Tracking of Wheeled Mobile Robots,” Procedia Technol., vol. 24, pp. 538–545, 2016, doi: 10.1016/j.protcy.2016.05.094.

M. J. Rabbani and A. Y. Memon, “Trajectory Tracking and Stabilization of Nonholonomic Wheeled Mobile Robot Using Recursive Integral Backstepping Control,” electronics, vol. 10, pp. 1–22, 2021.

O. Sharma, N. C. Sahoo, and N. B. Puhan, “A Survey on Smooth Path Generation Techniques for Nonholonomic Autonomous Vehicle Systems,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 5167–5172, 2019, doi: 10.1109/IECON.2019.8926946.

J. Chen, Y. Zhao, and X. Xu, “Improved RRT-Connect Based Path Planning Algorithm for Mobile Robots,” IEEE Access, vol. 9, pp. 145988–145999, 2021, doi: 10.1109/ACCESS.2021.3123622.

S. Ramasubramanian and S. A. Muthukumaraswamy, “On the Enhancement of Firefighting Robots using Path-Planning Algorithms,” SN Comput. Sci., vol. 2, no. 3, pp. 1–11, 2021, doi: 10.1007/s42979-021-00578-9.

F. Gul and W. Rahiman, “An Integrated approach for Path Planning for Mobile Robot Using Bi-RRT,” IOP Conf. Ser. Mater. Sci. Eng., vol. 697, no. 1, 2019, doi: 10.1088/1757-899X/697/1/012022.

Y. Gao, T. Hu, Y. Wang, and Y. Zhang, “Research on the Path Planning Algorithm of Mobile Robot,” Proc. - 2021 13th Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2021, pp. 447–450, 2021, doi: 10.1109/ICMTMA52658.2021.00102.

S. Luu, “songl/Masterthesis: Comparing the motion planning methods Hybrid A* and RRT for autonomous off-road driving of bicycle vehicles,” 2021, [Online]. Available: https://github.uio.no/songl/Masterthesis

S. B. Joseph, E. G. Dada, A. Abidemi, D. O. Oyewola, and B. M. Khammas, “Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems,” Heliyon, vol. 8, no. 5, p. e09399, 2022, doi: 10.1016/j.heliyon.2022.e09399.

T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022, doi: 10.1109/ACCESS.2022.3142859.

M. Madhiarasan, D. T. Cotfas, and P. A. Cotfas, “Black Widow Optimization Algorithm Used to Extract the Parameters of Photovoltaic Cells and Panels,” Mathematics, vol. 11, no. 4, 2023, doi: 10.3390/math11040967.

A. F. Peña-Delgado et al., “A novel bio-inspired algorithm applied to selective harmonic elimination in a three-phase eleven-level inverter,” Mathematical Problems in Engineering, pp. 1–10, 2020.

M. Mohamed and M. Hamza, “Design PID Neural Network Controller for Trajectory Tracking of Differential Drive Mobile Robot Based on PSO,” Eng. Technol. J., vol. 37, no. 12A, pp. 574–583, 2019, doi: 10.30684/etj.37.12a.12.

A. Al-Mayyahi, W. Wang, and P. Birch, “Path tracking of autonomous ground vehicle based on fractional order PID controller optimized by PSO,” SAMI 2015 - IEEE 13th Int. Symp. Appl. Mach. Intell. Informatics, Proc., pp. 109–114, 2015, doi: 10.1109/SAMI.2015.7061857.

G. A. Ibraheem, “Motion Control of An Autonomous Mobile Robot using Modified Particle Swarm Optimization Based Fractional Order PID Controller,” vol. 34, no. 13, pp. 2406–2419, 2016.




DOI: https://doi.org/10.18196/jrc.v5i1.20489

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ibrahim A. Hassan, Issa A. Abed, Walid A. Al-Hussaibi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik