Abnormality Determination of Spermatozoa Motility Using Gaussian Mixture Model and Matching-based Algorithm
Abstract
Keywords
Full Text:
PDFReferences
S. A. Seriki, C. C. Mfem, S. E. Oyama, and O. C. Otoikhila, “Impact of Age and Diet on Semen Quality and Male Fertility,” International Journal of Health Sciences, vol. 6, pp. 1121–1141, 2022, doi: 10.53730/ijhs.v6nS2.5104.
M. A. Bashir, P. O. Ibukun, V. H. Gerhard, and S. D. P. Stefans, “Cementing the Relationship Between Conventional and Advanced Semen Parameters,” Middle East Fertility Society Journal, vol. 26, no. 39, pp. 1-10, 2021, doi: 10.1186/s43043-021-00086-z.
C. Bettocchi, G. M. Busetto, G. Carrieri, and L. Cormio. Practical Clinical Andrology. Springer Nature, 2023.
I. Emma, A. Purwanto, S. S. Seso, P. Edy, S. Budi, and K. S. L. Edward, “Differences of Spermatozoa Concentration Analysis Between Manual and Automatic Methods,” Indonesian Journal of Medical Laboratory Science and Technology, vol. 3, no. 2, pp. 122-134, 2021, doi: 10.33086/ijmlst.v3i2.1961.
D. Christophe, B. Eugene, J. Jef, D. Francesca, O. Willem, C. Astrid, and D. Gilbert, “SARS-CoV-2 Infection Reduces Quality of Sperm Parameters: Prospective One Year Follow-Up Study In 93 Patients,” EBioMedicine, vol. 93, pp. 1-13, 2023, doi: 10.1016/j.ebiom.2023.104640.
World Health Organization. WHO Laboratory Manual for The Examination and Processing of Human Semen. Sixth Edition, 2021.
S. Chowdhury, M. M. Rahman, and M. A. Haque, “Role of women's empowerment in determining fertility and reproductive health in Bangladesh: A systematic literature review,” AJOG Global Reports, p. 100239, 2023.
United Nations-Departement of Economic and Social Affairs. World Fertility and Family Planning 2020 Highlights. United Nation Publication, New York, 2020.
W. Lutz, “Fertility will be determined by the changing ideal family size and the empowerment to reach these targets,” Vienna Yearbook of Population Research, vol. 18, pp. 63-70., 2020.
S. Ariyono, I. G. S. Mas Diyasa, M. Hatta, and Y. P. Eva, “Mixture gaussian V2 based microscopic movement detection of human spermatozoa,” International Journal of Advances in Intelligent Informatics, vol. 6, no. 2, pp. 210-222, 2020, doi: 10.26555/ijain.v6i2.507.
K. Shubham, N. Neha, Z. N. Sahar, and A. Umema, “A Comprehensive Study on Forensic Analysis of Semen: Issues Related to Integration, Quantification and Quality Assessment,” International Journal of Research Publication and Reviews, vol. 4, no. 6, pp. 3053-3058, 2023.
R. M. Daniel and R. G. Edgar, “Objective Assessment of Bull Sperm Motility Parameters Using Computer Vision Algorithms,” African Journal of Biotechnology, vol. 16, no. 37, pp. 1871-1881, 2017, doi: 10.5897/AJB2017.16122.
K. Marzena, S. Ewa, A. Agata, W. Tomasz, and K. K. Maciej, “Human Live Spermatozoa Morphology Assessment Using Digital Holographic Microscopy,” Scientific Report, vol. 12, 2022, doi: 10.1038/s41598-022-08798-6.
R. Marcello et al., “High-throughput Sperm Assay Using Label-Free Microscopy: Morphometric Comparison Between Different Sperm Structure of Boar and Stallion Spermatozoa,” Anim Reprod Sci., vol. 219, pp. 1-17, 2020, doi: 10.1016/j.anireprosci.2020.106509.
D. Christopher, P. Neel, G. K. Linda, H. Ralf, and A. Ashok, “A Novel Approach to Improving the Reliability of Manual Semen Analysis: A Paradigm Shift in the Workup of Infertile Men,” The World Journal of Men’s Health, vol 39, no. 2, pp. 172-185, 2021, doi: 10.5534/wjmh.190088.
F. Renata, L. Kristian, T. Samhita, H. Ralf, and A. Ashok, “The validity and Reliability of Computer-Aided Semen Analyzers in Performing Semen Analysis: A Systematic Review,” Translational Andrology and Urology, vol. 10, no. 7, pp. 3069-3079, 2021, doi: 10.21037/tau-21-276.
T. D. Joanna, B. Anna, T. H. Grażyna, H. Jan, P. Leszek, and J. Piotr, “Manual vs. Computer-Assisted Sperm Analysis: Can CASA Replace Manual Assessment Of Human Semen In Clinical Practice?,” Ginekologia Polska, vol. 88, no. 2, pp. 56–60, 2017.
A. Agustinus and P. Cennikon, “Computer Assisted Sperm Analysis: A Review,” Indonesian Andrology and Biomedical Journal, vol. 1, no. 2, pp. 60-66, 2020, doi: 10.20473/iabj.v1i2.35.
T. Maulana, P. Agung, M. Gunawan, and S. Said, “Computer aided semen analysis (CASA) to determine the quality and fertility of frozen thawed sumba ongole sperm supplemented with amino acids,” Livestock and Animal Research, vol. 20, no. 2, pp. 194-201, 2022, doi: 10.20961/lar.v20i2.58754.
Y. Jesús et al., “Expanding the Limits of Computer-Assisted Sperm Analysis through the Development of Open Software,” Biology, vol. 9, no. 8, pp. 207-223, 2020, doi: 10.3390/biology9080207.
J. W. Choi, L. Alkhoury, L. F. Urbano, P. Masson, V. M. Matthew, and K. Moshe, “An Assessment Tool for Computer-Assisted Semen Analysis (CASA) Algorithms,” Sci. Rep., vol. 12, pp. 16830, 2022, doi: 10.1038/s41598-022-20943-9.
S. C. Chua, J. Y. Steven, M. H. Peter, and L. Y. John, “How Well Do Semen Analysis Parameters Correlate with Sperm DNA Fragmentation? A Retrospective Study from 2567 Semen Samples Analyzed by the Halosperm Test,” Journal of Personalized Medicine, vol. 13, no. 518, pp. 1-12, 2023, doi: 10.3390/jpm13030518.
J. U. Joanna, G. Kamil, R. G. Aleksandra, and P. Malgorzata, “Relationship between sperm morphology and sperm DNA dispersion,” Translational Andrology and Urology, vol. 9, no. 2, pp. 405-416, 2020, doi: 10.21037/tau.2020.01.31.
P. Adhipireno, E. Purwanto, S. S. Sulijaya, I. Emma, S. Budi, and L. E. K. Setiawan, “Spermatozoa Morphology Examination Using Lenshooke SQA X1 Pro Compared With Manual Method,” Indonesian Journal of Medical Laboratory Science and Technology, vol. 4, no. 1, pp. 45–59, 2022, doi: 10.33086/ijmlst.v4i1.2059.
I. G. S. Masdiyasa, I. K. Eddy Purnama, and M. Herry Purnomo, “A New Method to Improve Movement Tracking of Human Sperms,” IAENG International Journal of Computer Science, vol. 45, no. 4, pp. 531-539, 2018.
Y. Ryuzo, “Mysteries and unsolved problems of mammalian fertilization and related topics,” Biology of Reproduction, vol. 106, no. 4, pp. 644–675, 2022.
O. M. Ciara et al., “The effect of adjusting settings within a Computer-Assisted Sperm Analysis (CASA) system on bovine sperm motility and morphology results,” Anim. Reprod., vol. 19, no. 1, 2022.
G. van der Horst, “Status of Sperm Functionality Assessment in Wildlife Species: From Fish to Primates,” Animals, vol. 11, no. 6, pp. 1491, 2021.
R. R. Maggavi, S. A. Pujari, and C. N. Vijaykumar, “Motility Analysis with Morphology: Study Related to Human Sperm,” Procedia Computer Science, vol. 152, pp. 179-185, 2019, doi: 10.1016/j.procs.2019.05.041.
O. Sandra, A. Shahin, G. Maurice, and W. S. Björn, “MotilitAI: A Machine Learning Framework for Automatic Prediction of Human Sperm Motility,” iScience Article, vol. 25, no. 8, pp. 1-18, 2022, doi: 10.1016/j.isci.2022.104644.
M. Suleman, M. Ilyas, M. I. U. Lali, H. T. Rauf, and S. Kadry, “A Review of Different Deep Learning Techniques for Sperm Fertility Prediction,” AIMS Mathematics, vol. 8, no. 7, pp. 16360-16416, 2023, doi: 10.3934/math.2023838.
I. Pilar, P. P. Paula, R. V. Lucia, F. S. Maria, C. Adriana, and S. Rossana, “Mitochondrial Metabolism Determines the Functional Status of Human Sperm and Correlates with Semen Parameters,” Frontiers in Cell and Developmental Biology, vol. 10, pp.1-12, 2022, doi: 10.3389/fcell.2022.926684.
M. F. Syahputra et al., “Identification Male Fertility Through Abnormalities Sperm Based Morphology (Teratospermia) using Invariant Moment Method,” Journal of Physics: Conference Series 9787(012107), 2018, DOI: 10.1088/1742-6596/978/1/012107.
V. Thambawita et al., “VISEM-Tracking, a Human Spermatozoa Tracking Dataset,” Scientific Data, vol. 10, no. 260, pp. 1-8, 2023, doi: 10.1038/s41597-023-02173-4.
L. Prabaharan and A. Raghunathan, “An Improved Convolutional Neural Network for Abnormality Detection and Segmentation From Human Sperm Images,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 3, pp. 3341–3352, 2021, doi: 10.1007/s12652-020-02773-7.
H. O. Ilhan and N. Aydin, “Smartphone Based Sperm Counting - An Alternative Way to The Visual Assessment Technique in Sperm Concentration Analysis,” Multimed. Tools Appl., vol. 79, no. 9–10, pp. 6409–6435, 2020, doi: 10.1007/s11042-019-08421-3.
C. Zhong, Y. Jinkun, L. Chen, and Z. Changheng, “A Method for Sperm Activity Analysis Based on Feature Point Detection Network in Deep Learning,” Frontiers in Computer Science, vol. 4, pp. 1-9, 2022, doi: 10.3389/fcomp.2022.861495.
M. Alameri et al., “Multistage Optimization Using a Modified Gaussian Mixture Model in Sperm Motility Tracking,” Computational and Mathematical Methods in Medicine, vol. 2021, pp. 1-14, 2021, doi: 10.1155/2021/6953593.
J. Soroush and A. M. Seyed, “A Novel Deep Learning Method for Automatic Assessment of Human Sperm Images,” Computers in Biology and Medicine, vol. 109, pp. 182-194, 2019, doi: 10.1016/j.compbiomed.2019.04.030.
S. Jevaraj and N. Madian, “Faster Region Convolutional Neural Network and Semen Tracking Algorithm for Sperm Analysis,” Computer Methods and Programs in Biomedicine, vol. 200, 2021, doi: 10.1016/j.cmpb.2020.105918.
Z. Ronghua, C. Yansong, H. Enyu, and H. Jianming, “Efficient Detection and Robust Tracking of Spermatozoa in Microscopic Video,” IET Image Processing, vol. 15, pp. 3200-3210, 2021, DOI: 10.1049/ipr2.12316.
H. Priyanto et al., “DeepSperm: A Robust and Real-Time Bull Sperm-Cell Detection in Densely Populated Semen Videos,” Computer Methods and Programs in Biomedicine, vol. 209, pp. 1-12, 2021, doi: 10.1016/j.cmpb.2021.106302.
E. M. K. Nour, N. T. Mohammed Hamed, and E. H. Aboul, “Automatic Counting and Visual Multi-tracking System for Human Sperm in Microscopic Video Frames,” AISC, vol. 845, pp. 525–531, 2019, doi: 10.1007/978-3-319-99010-1_48.
M. Chabane, B. Khelifa, and B. Tariq, “Adaptive Fast Scale Estimation, With Accurate Online Model Update Based on Kernelized Correlation Filter,” Mach. Vis. Appl., vol. 32, no. 4, pp. 1–12, 2021, doi: 10.1007/s00138-021-01216-3.
M. Van de Hoek, J. P. Rickard, and S. P. de Graaf, “Motility Assessment of Ram Spermatozoa,” Biology, vol. 11, no. 1715, pp. 1-26, 2022, doi: 10.3390/biology11121715.
B. Smail, A. Assia, K. Abdessamad, and A. Abdelouahed, “Efficient Parallel Implementation of Gaussian Mixture Model Background Subtraction Algorithm on An Embedded Multi-Core Digital Signal Processor,” Computers and Electrical Engineering. vol. 110, pp. 1-8, 2023, doi: 10.1016/j.compeleceng.2023.108827.
P. Hidayatullah, L. E. R. Tati Mengko, R. Munir, and A. Barlian, “Bull Sperm Tracking and Machine Learning-Based Motility Classification,” IEEE Access, vol. 9, pp. 61159-61170, 2021, doi: 10.1109/ACCESS.2021.3074127.
C. Ostadian et al., "The Effect of Prolonged Incubation of Sperm at Testis Temperature versus Room Temperature on Semen Parameters: An Experimental Study," Journal of Obstetrics, Gynecology and Cancer Research, vol. 7, no. 4, pp. 232-328, 2022.
L. F. Urbano, P. Masson, M. VerMilyea, and M. Kam, “Automatic Tracking and Motility Analysis of Human Sperm in Time-Lapse Images,” IEEE Transactions on Medical Imaging, vol. 36, no. 3, pp. 792-801, 2017, doi: 10.1109/TMI.2016.2630720.
P. Priyanka, S. Rishabh, and S. Laxmi, “Image Restoration of Image with Gaussian Filter,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 12, pp. 555-558, 2020.
Z. Yongjun and M. Feiyang, “Application and Optimization of Image Fuzzy Control Algorithm based on Gaussian Blur in TensorFlow Training,” Advances in Computer Science Research, vol. 87, pp. 854-860, 2019, doi: 10.2991/icmeit-19.2019.137.
A. R. D. Putri and P. N. B. Rizqi, “Image Classification with Shell Texture Feature Extraction Using Local Binary Pattern (LBP) Method,” Applied Technology and Computing Science Journal, vol. 3, no. 1, pp. 48-57, 2020, doi: 10.33086/atcsj.v3i1.1745.
I. G. S. Mas Diyasa, I. D. G. H. Wisana, I. K. E. Purnama, and M. H. Purnomo, "Modified Background Subtraction Statistic Models for Improvement Detection and Counting of Active Spermatozoa Motility," Lontar Komputer, vol. 9, no. 1, pp. 28-39, 2020, doi: 10.24843/LKJITI.2018.v09.i01.p04.
S. Hariharan and R. Venkatesan, "Background Subtraction in Surveillance Systems Using Local Spectral Histograms and Linear Regression," Intelligent Automation & Soft Computing, vol. 34, no. 1, pp. 407-408, 2022, doi: 10.32604/iasc.2022.025309.
M. Li and A. Schwartzman, " Standardization of Multivariate Gaussian Mixture Models and Background Adjustment of Pet Images in Brain Oncology," The Annals of Applied Statistics, vol. 12, no. 4, pp, 2197-2227, 2018, doi: 10.1214/18-AOAS1149.
G. Li, B. Li, C. Chen, S. Tan, and G. Qiu, "Learning General Gaussian Mixture Model with Integral Cosine Similarity," Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22), pp. 3201-3207, 2022.
S. Reichhuber and S. Tomforde, " EVolving Gaussian Mixture Models for Classification," Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022), vol. 3, pp. 964-974, 2022.
M. Alameri, K. Hasikin, N. Adib Kadri, N. F. M. Nasir, P. Mohandas, and J. S. Ann, "Multistage Optimization Using a Modified Gaussian Mixture Model in Sperm Motility Tracking," Computational and Mathematical Methods in Medicine, vol. 2021, pp. 1-14, 2020, doi: 10.1155/2021/6953593.
H. Dong and X. Zhang, "Moving Object Detection Algorithm Using Gaussian Mixture Model and SIFT Keypoint Match," Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Part I, LNICST, pp. 22–29, 2018, doi: 10.1007/978-3-319-73564-1_3.
S. Mangal and A. Kumar, "Real Time Moving Object Detection for Video Surveillance Based on Improved GMM," International Journal of Advanced Technology and Engineering Exploration, vol. 4, no. 26, pp. 17-22, 2018, doi: 10.19101/IJATEE.2017.426004.
W. Zhang, X. Sun, and Q. Yu, "Moving Object Detection under a Moving Camera via Background Orientation Reconstruction," Sensors, vol. 20, pp. 1-15, 2020, doi: 10.3390/s20113103.
N. Aslam and V. Sharma, "Foreground Detection of Moving Object Using Gaussian Mixture Model," IEEE-Explore, International Conference on Communication and Signal Processing, pp. 1071-1074, 2017.
Z. Mohammad Zafar, L. Shi, and L. Honggang, “Sperm-Oocyte Interplay: An Overview of Spermatozoon’s Role in Oocyte Activation and Current Perspectives in Diagnosis And Fertility Treatment,” Cell and Bioscience, vol. 11, no. 4, pp. 1-15, 2021, doi: 10.1186/s13578-020-00520-1.
S. Izabela, A. Miroslaw, J. Magdalena, Z. Aleksandra, J. Piotr, and K. Malgorzata, “Expression of Estrogen Receptors, PELP1, and SRC In Human Spermatozoa And Their Associations With Semen Quality,” Human Cell, vol. 36, pp. 554–567, 2023, doi: 10.1007/s13577-022-00847-6.
D. Darmastuti, E. P. Wibowo, M. M. J. Harlan, and S. Widiyanto, “Edge Detection of Mandibular Boundary Contour in Panoramic X-Ray to Detect Osteoporosis,” ICIC Express Letters, vol. 13, pp. 341-348, 2019, doi: 10.24507/icicel.13.04.341.
M. K. Fateme, R. S. M. Hamid, and S. Abdolhossein, “Efficient and Robust Segmentation and Tracking of Sperm Cells in Microscopic Image Sequences,” IET Computer Vision, vol. 13, no. 15, pp. 489-499, 2019, doi: 10.1049/iet-cvi.2018.5662.
L. Kristina, “Assessment of Human Sperm Cells Morphological Parameters,” IntechOpen, pp. 51-69, 2018, doi: 10.5772/intechopen.71413.
C. Violeta, H. Laurent, P. Caroline, H. Steffen, and H. Nancy, “Automatic classification of human sperm head morphology,” Computer in Biology and Medicine, vol. 84, pp. 205-216, 2017, doi: 10.1016/j.compbiomed.2017.03.029.
I. E. Poloskov, “Relations between cumulants and central moments and their applications,” Journal of Physics: Conference Series, vol. 1794, no. 1, pp. 1-8, 2021, doi: 10.1088/1742-6596/1794/1/012004.
F. Damayanti, S. Herawati, Imamah, F. M. Ayu, and A. Rachmad, “Indonesian license plate recognition based on area feature extraction,” Telkomnika, vol. 17, no. 2, pp. 620-627, 2019, doi: 10.12928/TELKOMNIKA.v17i2.9017.
F. Ouimet, “General Formulas for the Central and Non-Central Moments of the Multinomial Distribution,” Stats, vol. 4, pp. 18–27, 2021, doi: 10.3390/stats4010002.
J. Ren, F. Xia, X. Chen, J. Liu, M. Hou, A. Shehzad, N. Sultanova, and X. Kong, "Matching Algorithms: Fundamentals, Applications and Challenges," IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1-21, 2021.
Q. Yu, F. Hu, C. Chen, L. Sun, and X. Zheng, "Low-Frequency Trajectory Map Matching Method Based on Vehicle Heading Segmentation," ISPRS Int. J. Geo-Inf, vol. 11, no. 355, pp. 1-22, 2022, doi: 10.3390/ijgi11070355.
S. S. Abdul-Jabbar, A K. Farhan, A. A. Abdelhamid, and M. E. Ghoneim, "Razy: A String-Matching Algorithm for Automatic Analysis of Pathological Reports," Axioms, vol. 11, no. 547, pp. 1-15, 2022, doi: 10.3390/axioms11100547.
S. K. Prasad, J. Rachna, O.I. Khalaf, and D. N Le, "Map Matching Algorithm: Real Time Location Tracking for Smart Security Application," Telecommunications and Radio Engineering, vol. 79, no. 13, pp. 1-14, 2020.
C. Luo, W. Yang, P. Huang, and J. Zhou, "Overview of Image Matching Based on ORB Algorithm," IOP Conf. Series: Journal of Physics: Conf, Series, vol. 1237, pp. 1-7, 2021, doi: 10.1088/1742-6596/1237/3/032020.
P. Kumari and K. R. Seeja, "An Optimal Feature Enriched Region of Interest (ROI) Extraction for Periocular Biometric System," Multimedia Tools and Applications, vol. 80, pp. 33573–33591, 2021, doi: 10.1007/s11042-021-11402-0.
P. Li, H. Wang, M. Yu, and Y. Li, "Overview of Image Smoothing Algorithms," Journal of Physics: Conference Series, vol. 1883, pp. 1-9, 2021, doi: 10.1088/1742-6596/1883/1/012024.
B. Faghih and J. Timoney, "Smart-Median: A New Real-Time Algorithm for Smoothing Singing Pitch Contours," Appl. Sci., vol. 12, pp. 1-22, 2022 doi: 10.3390/app12147026.
M. Suleman, M. Ilyas, M. I. U. Lali, H. T. Rauf, and S. Kadry, “A Review Of Different Deep Learning Techniques For Sperm Fertility Prediction,” AIMS Mathematics, vol. 8, no. 7, pp. 16360-16416, 2023, doi: 10.3934/math.2023838.
A. A. Ahmad, H. Abdulsamet, and H. A. Emrah, “A robust sperm cell tracking algorithm using uneven lighting image fixing and improved branch and bound algorithm,” IET Image Processing, 2020, doi: 10.1049/ipr2.12178.
K. Michel, F. Corinne, M. P. Bigette, and A. Jacques, “Factors influencing human sperm kinematic measurements by the Celltrak computer-assisted sperm analysis system,” Human Reproduction, vol. 13, no. 3, pp. 611-619, 1998.
D. S. K. Karunasingha, “Root Mean Square Error or Mean Absolute Error? Use Their Ratio as Well,” Information Sciences, vol. 585, pp. 609-629, 2022, doi: 10.1016/j.ins.2021.11.036.
T. O. Hodson, “Root Mean Square Error (RMSE) or mean absolute error (MAE): when to use them or not,” Geoscientific Model Development, vol. 15, no. 14, pp. 1-10, 2022, doi: 10.5194/gmd-2022-64.
M. B. Nirwana and D. Wulandari, “Comparison of Simple and Segmented Linear Regression Models on the Effect of Sea Depth toward the Sea Temperature,” Enthusiastic International Journal Of Statistics And Data Science, vol. 1, no. 2, pp. 68-75, 2021.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1-24, 2021, doi: 10.7717/peerj-cs.623.
H. Pham, “A New Criterion for Model Selection,” Mathematics, vol. 7, pp. 1-12, 2019, doi: 10.3390/math7121215.
A.G. Priya Varshini, K. Anitha Kumari, D. Janani, and S Soundariya, “Comparative analysis of Machine learning and Deep learning algorithms for Software Effort Estimation,” Journal of Physics: Conference Series, vol. 1767, pp. 1-12, 2021, doi: 10.1088/1742-6596/1767/1/012019.
I. G. S. Mas Diyasa, E. Y. Puspaningrum, M. Hatta, and A Setiawan, “New Method for Classification Of Spermatozoa Morphology Abnormalities Based On Macroscopic Video Of Human Semen,” International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 133-140, 2019, doi: 10.1109/ISEMANTIC.2019.8884348.
N. Jianjun, X. Zhang, P. Shi, and J. Zhu, “An Improved Kernelized Correlation Filter Based Visual Tracking Method,” Mathematical Problems in Engineering, vol. 2018, pp. 1-13, 2018, doi: 10.1155/2018/6931020.
L. Gong, Z. Mo, S. Zhao, and Y. Song, “An improved Kernelized Correlation Filter tracking algorithm based on multi-channel memory model,” Signal Processing: Image Communication, vol. 78, pp. 200-205, 2019, doi: 10.1016/j.image.2019.05.019.
H. Zhang, H. Zhan, L. Zhang, F. Xu, and X. Ding, “A Kalman Filter-Based Kernelized Correlation Filter Algorithm for Pose Measurement of a Micro-Robot,” Micromachines, vol. 12, pp. 1-24, 2021, doi: 10.3390/mi12070774.
L. Zhouzhou, L. Mengna, and Z. Yangmei, “Kernelised Correlation Filters Target Tracking Fused Multi‐Feature Based on The Unmanned Aerial Vehicle Platform,” IET Wireless Sensor Systems, vol. 12, pp. 1-11, 2022, doi: 10.1049/wss2.12029.
DOI: https://doi.org/10.18196/jrc.v5i1.20686
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 I Gede Susrama Mas Diyasa, Wahyu Syaifullah Jauharis, Anak Agung Ngurah Gunawan, Dheasy Herawati, sahrul munir
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com