A Performance Evaluation of Repetitive and Iterative Learning Algorithms for Periodic Tracking Control of Functional Electrical Stimulation System
Abstract
Functional electrical stimulation (FES) is a medical device that delivers electrical pulses to the muscle, allowing patients with spinal cord injuries to perform activities such as walking, cycling, and grasping. It is critical for the FES to generate stimuli with the appropriate controller so that the desired movements can be precisely tracked. By considering the repetitive nature of the movements, the learning-based control algorithms are utilized for regulating the FES. Iterative learning control (ILC) and repetitive control (RC) are two learning algorithms that can be used to accomplish accurate repetitive motions. This study investigates a variety of ILC and RC designs with distinct learning functions; this constitutes our contribution to the field. The FES model of ankle angle, which is in a class of discrete-time linear systems is considered in this study. Two learning functions, i.e., proportional, and zero-phase learning functions, are simulated for the second-order FES model running at a sampling time of 0.1 s. The results indicate the superior performance of the ILC and RC in terms of convergence rate using the zero-phase learning function. ILC and RC with a zero-phase learning function can reach a zero root-mean-square error in two iterations if the model of the plant is correct. This is faster than proportional-based ILC and RC, which takes about 40 iterations. This indicates that the zero-phase learning function requires two iterations to ensure that the patient's ankle angle precisely tracks the intended trajectory. However, the tracking performance is degraded for both control methods, especially when the model is subject to uncertainties. This specific problem can lead to future research directions.
Keywords
Full Text:
PDFReferences
N. A. Alawad, A. J. Humaidi, A. S. M. Al-Obaidi, and A. S. Alaraji, “Active Disturbance Rejection Control of Wearable Lower-Limb System Based on Reduced ESO,” Indones. J. Sci. Technol., vol. 7, no. 2, pp. 203–218, 2022, doi: 10.17509/ijost.v7i2.46435.
C.-F. Chen et al., “Development and Hybrid Control of an Electrically Actuated Lower Limb Exoskeleton for Motion Assistance,” IEEE Access, vol. 7, pp. 169107–169122, 2019, doi: 10.1109/ACCESS.2019.2953302.
S. A. Moezi, R. Sedaghati, and S. Rakheja, “Nonlinear dynamic modeling and model-based AI-driven control of a magnetoactive soft continuum robot in a fluidic environment,” ISA Trans., 2023, doi: 10.1016/j.isatra.2023.10.030.
L. Zhao, X. Liu, and T. Wang, “Trajectory tracking control for double-joint manipulator systems driven by pneumatic artificial muscles based on a nonlinear extended state observer,” Mech. Syst. Signal Process., vol. 122, pp. 307–320, 2019, doi: 10.1016/j.ymssp.2018.12.016.
L. Zhao, X. Liu, J. Zhang, and T. Wang, “Angle tracking control for double-joint dexterous hand systems based on a piecewise extended state observer,” Control Eng. Pract., vol. 110, p. 104754, 2021, doi: 10.1016/j.conengprac.2021.104754.
Q. Yang, W. Wang, Y. Zhang, Q. Yan, and J. Cai, “Angle Error-Tracking Iterative Learning Control for Pneumatic Artificial Muscle System,” IEEE Access, vol. 9, pp. 163099–163107, 2021, doi: 10.1109/ACCESS.2021.3133864.
Y. Yu and S. Lai, “Initial-Rectification Barrier Iterative Learning Control for Pneumatic Artificial Muscle Systems With Nonzero Initial Errors and Iteration-Varying Reference Trajectories,” IEEE Access, vol. 10, pp. 24194–24202, 2022, doi: 10.1109/ACCESS.2022.3155694.
R. Wu, Z. Yao, J. Si, and H. H. Huang, “Robotic Knee Tracking Control to Mimic the Intact Human Knee Profile Based on Actor-Critic Reinforcement Learning,” IEEE/CAA J. Autom. Sin., vol. 9, no. 1, pp. 19–30, 2022, doi: 10.1109/JAS.2021.1004272.
E. Al Khatib, P. Razzaghi, and Y. Hurmuzlu, “Feedback control of millimeter scale pivot walkers using magnetic actuation,” Rob. Auton. Syst., vol. 168, p. 104496, 2023, doi: 10.1016/j.robot.2023.104496.
V. Chertopolokhov, O. Andrianova, A. Hernandez-Sanchez, C. Mireles, A. Poznyak, and I. Chairez, “Averaged sub-gradient integral sliding mode control design for cueing end-effector acceleration of a two-link robotic arm,” ISA Trans., vol. 133, pp. 134–146, 2023, doi: 10.1016/j.isatra.2022.07.024.
R. Padmanabhan, N. Meskin, C. M. Ionescu, and W. M. Haddad, “A nonovershooting tracking controller for simultaneous infusion of anesthetics and analgesics,” Biomed. Signal Process. Control, vol. 49, pp. 375–387, 2019, doi: 10.1016/j.bspc.2018.09.015.
J. Gastinger, D. Müller, A. Hildebrandt, and O. Sawodny, “Pose Estimation and Tracking Control of a Pneumatic Soft Robotic Hand,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9962–9967, 2020, doi: 10.1016/j.ifacol.2020.12.2712.
K. Ba et al., “Dynamics compensation of impedance-based motion control for LHDS of legged robot,” Rob. Auton. Syst., vol. 139, p. 103704, 2021, doi: 10.1016/j.robot.2020.103704.
V. Oguntosin and A. Abdulkareem, “Design of a pneumatic soft actuator controlled via eye tracking and detection,” Heliyon, vol. 6, no. 7, p. e04388, 2020, doi: 10.1016/j.heliyon.2020.e04388.
C. L. Lynch and M. R. Popovic, “Stimulation of Induced Muscle Contractions,” IEEE Control Syst. Mag., pp. 40–50, 2008.
V. Ghanbari, V. H. Duenas, P. J. Antsaklis, and W. E. Dixon, “Passivity-Based Iterative Learning Control for Cycling Induced by Functional Electrical Stimulation With Electric Motor Assistance,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 2287–2294, 2019, doi: 10.1109/TCST.2018.2854773.
E. Jafari and A. Erfanian, “A Distributed Automatic Control Framework for Simultaneous Control of Torque and Cadence in Functional Electrical Stimulation Cycling,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 1908–1919, 2022, doi: 10.1109/TNSRE.2022.3188735.
B. C. Allen, K. J. Stubbs, and W. E. Dixon, “Robust cadence tracking for switched FES-cycling using a time-varying estimate of the electromechanical delay,” Automatica, vol. 144, no. 2, pp. 827–834, 2022, doi: 10.1016/j.automatica.2022.110466.
N. Hayami et al., “Development and Validation of a Closed-Loop Functional Electrical Stimulation-Based Controller for Gait Rehabilitation Using a Finite State Machine Model,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 1642–1651, 2022, doi: 10.1109/TNSRE.2022.3183571.
S. Akbari, G. Merritt, F. M. Zegers, and C. A. Cousin, “A Hybrid Systems Approach to Dual-Objective Functional Electrical Stimulation Cycling,” IEEE Control Syst. Lett., vol. 6, pp. 2126–2131, 2022, doi: 10.1109/LCSYS.2021.3138190.
Y. Kushima, Y. Araki, H. Kawai, T. Murao, Y. Kawai, and M. Kishitani, “Velocity Tracking Control of Recumbent Trike with Functional Electrical Stimulation,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 207–211, 2020, doi: 10.1016/j.ifacol.2021.04.210.
Z. Sun, X. Bao, Q. Zhang, K. Lambeth, and N. Sharma, “A Tube-based Model Predictive Control Method for Joint Angle Tracking with Functional Electrical Stimulation and An Electric Motor Assist,” Proc. Am. Control Conf., vol. 2021, no. 5, pp. 1390–1395, 2021, doi: 10.23919/ACC50511.2021.9483084.
B. C. Allen, K. J. Stubbs, and W. E. Dixon, “Adaptive trajectory tracking during motorized and fes-induced biceps curls via integral concurrent learning,” ASME 2020 Dyn. Syst. Control Conf. DSCC 2020, vol. 1, pp. 2557–2566, 2020, doi: 10.1115/DSCC2020-3125.
Y. Hasegawa, T. Kitamura, S. Sakaino, and T. Tsuji, “Bilateral control of elbow and shoulder joints using functional electrical stimulation between humans and robots,” IEEE Access, vol. 8, pp. 15792–15799, 2020, doi: 10.1109/ACCESS.2020.2967466.
E. Kurniawan et al., “Low-order sliding mode repetitive control for uncertain linear systems perturbed by band-limited periodic disturbances,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., vol 237, no 9, 2023, doi: 10.1177/09596518231165566.
E. Kurniawan, H. Wang, B. H. Sirenden, J. A. Prakosa, H. Adinanta, and S. Suryadi, “Discrete-time modified repetitive sliding mode control for uncertain linear systems,” Int. J. Adapt. Control Signal Process., vol. 35, no. 11, pp. 2245–2258, 2021, doi: 10.1002/acs.3316.
E. Kurniawan et al., “Robust adaptive repetitive control for unknown linear systems with odd-harmonic periodic disturbances,” Sci. China Inf. Sci., vol. 65, no. 12, p. 222202, 2022, doi: 10.1007/s11432-022-3561-2.
M. Mitrevska, Z. Cao, J. Zheng, E. Kurniawan, and Z. Man, “Discrete terminal sliding mode repetitive control for a linear actuator with nonlinear friction and uncertainties,” Int. J. Robust Nonlinear Control, vol. 29, no. 13, pp. 4285–4297, 2019, doi: 10.1002/rnc.4639.
E. Kurniawan et al., “Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals,” Int. J. Appl. Math. Comput. Sci., vol. 30, no. 2, pp. 207–218, 2020, doi: 10.34768/amcs-2020-0016.
S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of Robots by learning,” J. Robot. Syst., vol. 1, no. 2, pp. 123–140, 1984, doi: 10.1002/rob.4620010203.
Y. Chen, D. Huang, Y. Li, and X. Feng, “A Novel Iterative Learning Approach for Tracking Control of High-Speed Trains Subject to Unknown Time-Varying Delay,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 1, pp. 113–121, 2022, doi: 10.1109/TASE.2020.3041952.
Q. Yu and Z. Hou, “Adaptive Fuzzy Iterative Learning Control for High-Speed Trains with Both Randomly Varying Operation Lengths and System Constraints,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2408–2418, 2021, doi: 10.1109/TFUZZ.2020.2999958.
D. Huang, Y. Chen, D. Meng and P. Sun, "Adaptive Iterative Learning Control for High-Speed Train: A Multi-Agent Approach," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 7, pp. 4067-4077, 2021.
I. Trojaola, I. Elorza, E. Irigoyen, A. Pujana-Arrese, and C. Calleja, “Iterative learning control and Gaussian process regression for hydraulic cushion control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1421–1426, 2020, doi: 10.1016/j.ifacol.2020.12.1909.
Q. Li, Z. Ruan, L. Guo, and C. Ding, “Clamp-shear coupling compensation of a walking piezo actuator combining ILC and hysteresis compensation,” Mech. Syst. Signal Process., vol. 208, p. 110964, 2024, doi: 10.1016/j.ymssp.2023.110964.
R. Wang, Z. Zhuang, H. Tao, W. Paszke, and V. Stojanovic, “Q-learning based fault estimation and fault tolerant iterative learning control for MIMO systems,” ISA Trans., vol. 142, pp. 123–135, 2023, doi: 10.1016/j.isatra.2023.07.043.
F. Browne, B. Rees, G. T. C. Chiu, and N. Jain, “Iterative Learning Control with Time-Delay Compensation: An Application to Twin-Roll Strip Casting,” IEEE Trans. Control Syst. Technol., vol. 29, no. 1, pp. 140–149, 2021, doi: 10.1109/TCST.2020.2971452.
L. Hladowski, K. Galkowski, and E. Rogers, “Practical Application of the Dynamic Output-Only Iterative Learning Control Design To The Crane System*,” IFAC-PapersOnLine, vol. 55, no. 12, pp. 476–481, 2022, doi: 10.1016/j.ifacol.2022.07.357.
Z. Shahriari, G. A. Dumont, and K. Fong, “Iterative Learning Control for Beam Loading Cancellation in Electron Linear Accelerator,” IFAC-PapersOnLine, vol. 54, no. 21, pp. 55–60, 2021, doi: 10.1016/j.ifacol.2021.12.010.
Z. Hong, Q. Yan, X. Wu, and J. Cai, “Fuzzy System-Based Position Tracking Iterative Learning Control for Tank Gun Control Systems with Error Constraints,” IEEE Access, vol. 10, pp. 52462–52471, 2022, doi: 10.1109/ACCESS.2022.3175838.
J. C. Ren, D. Liu, and Y. Wan, “Model-Free Adaptive Iterative Learning Control Method for the Czochralski Silicon Monocrystalline Batch Process,” IEEE Trans. Semicond. Manuf., vol. 34, no. 3, pp. 398–407, 2021, doi: 10.1109/TSM.2021.3074625.
H. Xie, Y. Wen, X. Shen, H. Zhang, and L. Sun, “High-Speed AFM Imaging of Nanopositioning Stages Using H∞ and Iterative Learning Control,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2430–2439, 2020, doi: 10.1109/TIE.2019.2902792.
L. Bingqiang, L. Tianyi, Z. Yiyun, and L. Shuaishuai, “Open-loop and closed-loop Dα-type iterative learning control for fractional-order linear multi-agent systems with state-delays,” J. Syst. Eng. Electron., vol. 32, no. 1, pp. 197–208, 2021, doi: 10.23919/JSEE.2021.000017.
D. X. Ba, N. T. Thien, and J. Bae, “A Novel Iterative Second-Order Neural-Network Learning Control Approach for Robotic Manipulators,” IEEE Access, vol. 11, pp. 58318–58332, 2023, doi: 10.1109/ACCESS.2023.3280979.
J. Dong, B. He, M. Ming, C. Zhang, and G. Li, “Design of Open-Closed-Loop Iterative Learning Control With Variable Stiffness for Multiple Flexible Manipulator Robot Systems,” IEEE Access, vol. 7, pp. 23163–23168, 2019, doi: 10.1109/ACCESS.2019.2898266.
C. E. Boudjedir, M. Bouri, and D. Boukhetala, “Model-Free Iterative Learning Control With Nonrepetitive Trajectories for Second-Order MIMO Nonlinear Systems—Application to a Delta Robot,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7433–7443, 2021, doi: 10.1109/TIE.2020.3007091.
L. Yang, Y. Li, D. Huang, J. Xia, and X. Zhou, “Spatial Iterative Learning Control for Robotic Path Learning,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 5789–5798, 2022, doi: 10.1109/TCYB.2021.3138992.
H. Fu, C. Hu, D. Yu, Y. Zhu, and M. Zhang, “Cascaded iterative learning motion control of precision maglev planar motor with experimental investigation,” ISA Trans., vol. 139, pp. 463–474, 2023, doi: 10.1016/j.isatra.2023.03.031.
D. Meng, “Convergence Conditions for Solving Robust Iterative Learning Control Problems Under Nonrepetitive Model Uncertainties,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 6, pp. 1908–1919, 2019, doi: 10.1109/TNNLS.2018.2874977.
T. Zhang, X. Jiao, and Y. Zhang, “Internal-Model-Principle-Based Fast Adaptive Iterative Learning Trajectory Tracking Control for Autonomous Farming Vehicle Under Alignment Condition and Input Constraint,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 53, no. 6, pp. 3588–3599, 2023, doi: 10.1109/TSMC.2022.3229523.
Q. Shi, X. Huang, B. Meng, and Z. Wang, “Neural network-based iterative learning control for trajectory tracking of unknown SISO nonlinear systems,” Expert Syst. Appl., vol. 232, p. 120863, 2023, doi: 10.1016/j.eswa.2023.120863.
Z. Afkhami, D. J. Hoelzle, and K. Barton, “Robust Higher-Order Spatial Iterative Learning Control for Additive Manufacturing Systems,” IEEE Trans. Control Syst. Technol., vol. 31, no. 4, pp. 1692–1707, 2023, doi: 10.1109/TCST.2023.3243397.
M. Cobb, J. Reed, M. Wu, K. D. Mishra, K. Barton, and C. Vermillion, “Flexible-Time Receding Horizon Iterative Learning Control With Application to Marine Hydrokinetic Energy Systems,” IEEE Trans. Control Syst. Technol., vol. 30, no. 6, pp. 2767–2774, 2022, doi: 10.1109/TCST.2022.3165734.
K. L. Moore, Y. Chen, and H.-S. Ahn, “Iterative Learning Control: A Tutorial and Big Picture View,” in Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2352–2357, 2006. doi: 10.1109/CDC.2006.377582.
D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 96–114, 2006, doi: 10.1109/MCS.2006.1636313.
Y. Yang, X. Dong, X. Liu, and D. Huang, “Robust Repetitive Learning-Based Trajectory Tracking Control for a Leg Exoskeleton Driven by Hybrid Hydraulic System,” IEEE Access, vol. 8, pp. 27705–27714, 2020, doi: 10.1109/ACCESS.2020.2971777.
A. Tilli, E. Ruggiano, C. Conficoni, and A. Bosso, “A Hybrid Adaptation Strategy for Repetitive Control of an Uncertain-Delay Lagrangian System,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 8965–8972, 2020, doi: 10.1016/j.ifacol.2020.12.1483.
L. Blanken, P. Bevers, S. Koekebakker, and T. Oomen, “Sequential Multiperiod Repetitive Control Design With Application to Industrial Wide-Format Printing,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 770–778, 2020, doi: 10.1109/TMECH.2020.2967305.
Y. Cao and Z. Zhang, “Cross-Coupled Repetitive Control of a Compliant Nanomanipulator for Micro-Stereolithography,” IEEE Access, vol. 8, pp. 3891–3900, 2020, doi: 10.1109/ACCESS.2019.2962967.
P. Cui, H. Xu, Z. Liu, J. Li, and B. Han, “Improved Second-Order Repetitive Control With Parameter Optimization for Magnetically Suspended Rotor System,” IEEE Sens. J., vol. 20, no. 5, pp. 2294–2303, 2020, doi: 10.1109/JSEN.2019.2951764.
P. Cui, Q. Wang, G. Zhang, and Q. Gao, “Hybrid Fractional Repetitive Control for Magnetically Suspended Rotor Systems,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3491–3498, 2018, doi: 10.1109/TIE.2017.2752119.
P. Cui, H. Xu, Z. Liu, B. Han, and H. Li, “Harmonic Current Suppression of Magnetically Suspended Rotor System via Odd-Harmonic Fractional RC,” IEEE Sens. J., vol. 19, no. 13, pp. 4812–4819, 2019, doi: 10.1109/JSEN.2019.2901937.
M. Mitrevska, Z. Cao, J. Zheng, E. Kurniawan, and Z. Man, “Design of a Robust Discrete-time Phase Lead Repetitive Control in Frequency Domain for a Linear Actuator with Multiple Phase Uncertainties,” Int. J. Control. Autom. Syst., vol. 16, no. 6, pp. 2609–2620, 2018, doi: 10.1007/s12555-017-0208-x.
Z. Zhang, B. Chu, Y. Liu, H. Ren, Z. Li, and D. H. Owens, “Multiperiodic Repetitive Control for Functional Electrical Stimulation-Based Wrist Tremor Suppression,” IEEE Trans. Control Syst. Technol., vol. 30, no. 4, pp. 1494–1509, 2022, doi: 10.1109/TCST.2021.3111107.
Z. Zhang, B. Chu, Y. Liu, Z. Li, and D. H. Owens, “Multimuscle Functional-Electrical-Stimulation-Based Wrist Tremor Suppression Using Repetitive Control,” IEEE/ASME Trans. Mechatronics, pp. 1–11, 2022, doi: 10.1109/TMECH.2022.3150301.
A. Lunardi, E. Conde, J. Assis, L. Meegahapola, D. A. Fernandes, and A. J. S. Filho, “Repetitive Predictive Control for Current Control of Grid-Connected Inverter Under Distorted Voltage Conditions,” IEEE Access, vol. 10, pp. 16931–16941, 2022, doi: 10.1109/ACCESS.2022.3147812.
Q. Zhao, H. Zhang, Y. Gao, S. Chen, and Y. Wang, “Novel Fractional-Order Repetitive Controller Based on Thiran IIR Filter for Grid-Connected Inverters,” IEEE Access, vol. 10, pp. 82015–82024, 2022, doi: 10.1109/ACCESS.2022.3196776.
J. Ye, L. Liu, J. Xu, and A. Shen, “Frequency Adaptive Proportional-Repetitive Control for Grid-Connected Inverters,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 7965–7974, 2021, doi: 10.1109/TIE.2020.3016247.
T. Chmielewski, W. Jarzyna, D. Zieliński, K. Gopakumar, and M. Chmielewska, “Modified repetitive control based on comb filters for harmonics control in grid-connected applications,” Electr. Power Syst. Res., vol. 200, p. 107412, 2021, doi: 10.1016/j.epsr.2021.107412.
A. Straś, B. Ufnalski, M. Michalczuk, A. Gałecki, and L. Grzesiak, “Design of fractional delay repetitive control with a dead-beat compensator for a grid-tied converter under distorted grid voltage conditions,” Control Eng. Pract., vol. 98, p. 104374, 2020, doi: 10.1016/j.conengprac.2020.104374.
T. Ohashi, H. Shibata, S. Futami, and R. Sato, “Nanometer-Order Contouring Control in a Feed Drive System Using Linear Ball Guides by Applying a Combination of Modified Disturbance Observer and Repetitive Control,” Nanomanufacturing Metrol., vol. 4, no. 2, pp. 118–129, 2021, doi: 10.1007/s41871-020-00095-y.
L.-W. Shih and C.-W. Chen, “Model-free repetitive control design and implementation for dynamical galvanometer-based raster scanning,” Control Eng. Pract., vol. 122, p. 105124, 2022, doi: 10.1016/j.conengprac.2022.105124.
L. Li, A. J. Fleming, Y. K. Yong, S. S. Aphale, and L. Zhu, “High performance raster scanning of atomic force microscopy using Model-free Repetitive Control,” Mech. Syst. Signal Process., vol. 173, p. 109027, 2022, doi: 10.1016/j.ymssp.2022.109027.
J. Reinders, M. Giaccagli, B. Hunnekens, D. Astolfi, T. Oomen, and N. van de Wouw, “Repetitive Control for Lur’e-Type Systems: Application to Mechanical Ventilation,” IEEE Trans. Control Syst. Technol., vol. 31, no. 4, pp. 1819–1829, 2023, doi: 10.1109/TCST.2023.3250966.
S. Tian, K.-Z. Liu, M. Zhang, C. Lu, M. Wu, and J. She, “Harmonic Disturbance Suppression for High-Performance Nonlinear Repetitive-Control Systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 4545–4550, 2023, doi: 10.1016/j.ifacol.2023.10.952.
Y.-H. Lan, J.-L. He, P. Li, and J.-H. She, “Optimal preview repetitive control with application to permanent magnet synchronous motor drive system,” J. Franklin Inst., vol. 357, no. 15, pp. 10194–10210, 2020, doi: 10.1016/j.jfranklin.2020.04.026.
Q. Chen, X. Yu, M. Sun, C. Wu, and Z. Fu, “Adaptive Repetitive Learning Control of PMSM Servo Systems with Bounded Nonparametric Uncertainties: Theory and Experiments,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8626–8635, 2021, doi: 10.1109/TIE.2020.3016257.
R. Chuei and Z. Cao, “Extreme learning machine-based super-twisting repetitive control for aperiodic disturbance, parameter uncertainty, friction, and backlash compensations of a brushless DC servo motor,” Neural Comput. Appl., vol. 32, no. 18, pp. 14483–14495, 2020, doi: 10.1007/s00521-020-04965-w.
A. K. Seth and M. Singh, “Modified repetitive control design for two stage off board Electric Vehicle charger,” ISA Trans., vol. 128, pp. 343–356, 2022, doi: 10.1016/j.isatra.2021.09.015.
Z. Feng, M. Ming, J. Ling, X. Xiao, Z.-X. Yang, and F. Wan, “Fractional delay filter based repetitive control for precision tracking: Design and application to a piezoelectric nanopositioning stage,” Mech. Syst. Signal Process., vol. 164, p. 108249, 2022, doi: 10.1016/j.ymssp.2021.108249.
C. Jia and R. W. Longman, “An adaptive smooth second-order sliding mode repetitive control method with application to a fast periodic stamping system,” Syst. Control Lett., vol. 151, p. 104912, 2021, doi: 10.1016/j.sysconle.2021.104912.
B. M. Yilmaz, E. Tatlicioglu, A. Savran, and M. Alci, “Adaptive fuzzy logic with self-tuned membership functions based repetitive learning control of robotic manipulators,” Appl. Soft Comput., vol. 104, p. 107183, 2021, doi: 10.1016/j.asoc.2021.107183.
B. Panomruttanarug, “Position Control of Robotic Manipulator Using Repetitive Control Basedon Inverse Frequency Response Design,” Int. J. Control. Autom. Syst., vol. 18, no. 11, pp. 2830–2841, 2020, doi: 10.1007/s12555-019-0518-2.
X. Zhang and Z. Zheng, “Application of Repetitive Control in Electric Spring,” IEEE Access, vol. 8, pp. 216607–216616, 2020, doi: 10.1109/ACCESS.2020.3041648.
B. A. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,” Appl. Math. Optim., vol. 2, no. 2, pp. 170–194, 1975, doi: 10.1007/BF01447855.
E. Kurniawan, H. Adinanta, H. G. Harno, J. A. Prakosa, S. Suryadi, and P. Purwowibowo, “On the synthesis of a stable and causal compensator for discrete-time high-order repetitive control systems,” Int. J. Dyn. Control, vol. 9, no. 2, pp. 727–736, 2021, doi: 10.1007/s40435-020-00695-y.
M. Tomizuka, T.-C. Tsao, and K.-K. Chew, “Analysis and Synthesis of Discrete-Time Repetitive Controllers,” J. Dyn. Syst. Meas. Control., vol. 111, 1989, doi: 10.1115/1.3153060.
E. Kurniawan et al., “Design of Fractional Order Odd-Harmonics Repetitive Controller for Discrete-Time Linear Systems with Experimental Validations,” Sensors, vol. 22, no. 22. 2022, doi: 10.3390/s22228873.
E. Kurniawan, Z. Cao, O. Mahendra, and R. Wardoyo, “A survey on robust Repetitive Control and applications,” in 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), pp. 524–529, 2014, doi: 10.1109/ICCSCE.2014.7072774.
E. Kurniawan, R. Wardoyo, and E. A. Gojali, “Tracking and robust performance of discrete-time model-based controller,” Proceeding - 2016 Int. Conf. Comput. Control. Informatics its Appl. Recent Prog. Comput. Control. Informatics Data Sci. IC3INA 2016, no. 4, pp. 28–32, 2017, doi: 10.1109/IC3INA.2016.7863018.
T. Seel, T. Schauer, and J. Raisch, “Iterative Learning Control for Variable Pass Length Systems,” IFAC Proc. Vol., vol. 44, no. 1, pp. 4880–4885, 2011, doi: 10.3182/20110828-6-IT-1002.02180.
R. Longman, “Iterative Learning Control and Repetitive Control for Engineering Practice,” Int. J. Control, vol. 73, pp. 930–954, 2000, doi: 10.1080/002071700405905.
DOI: https://doi.org/10.18196/jrc.v5i1.20705
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Edi Kurniawan, Enggar B. Pratiwi, Hendra Adinanta, Suryadi, Jalu A. Prakosa, Purwowibowo, Sensus Wijonarko, Tatik Maftukhah, Dadang Rustandi, Mahmudi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com