A Multi Representation Deep Learning Approach for Epileptic Seizure Detection

Arya Tandy Hermawan, Ilham Ari Elbaith Zaeni, Aji Prasetya Wibawa, Gunawan Gunawan, William Hartanto Hendrawan, Yosi Kristian

Abstract


Epileptic seizures, unpredictable in nature and potentially dangerous during activities like driving, pose significant risks to individual and public safety. Traditional diagnostic methods, which involve labour-intensive manual feature extraction from Electroencephalography (EEG) data, are being supplanted by automated deep learning frameworks. This paper introduces an automated epileptic seizure detection framework utilizing deep learning to bypass manual feature extraction. Our framework incorporates detailed pre-processing techniques: normalization via L2 normalization, filtering with an 80 Hz and 0,5 Hz Butterworth low-pass and high-pass filter, and a 50 Hz IIR Notch filter, channel selection based on standard deviation calculations and Mutual Information algorithm, and frequency domain transformation using FFT or STFT with Hann windows and 50% hop. We evaluated on two datasets: the first comprising 4 canines and 8 patients with 2.299 ictal, 23.445 interictal, and 32.915 test data, 400-5000Hz sampling rate across 16-72 channels; the second dataset, intended for testing, 733 icatal, 4.314 interictal, and 1908 test data, each 10 minutes long, recorded at 400Hz across 16 channels. Three deep learning architectures were assessed: CNN, LSTM, and a hybrid CNN-LSTM model-stems from their demonstrated efficacy in handling the complex nature of EEG data. Each model offers unique strengths, with the CNN excelling in spatial feature extraction, LSTM in temporal dynamics, and the hybrid model combining these advantages.  The CNN model, comprising 31 layers, yielded highest accuracy, achieving 91% on the first dataset (precision 92%, recall 91%, F1-score 91%) and 82% on the second dataset using a 30-second threshold. This threshold was chosen for its clinical relevance. The research advances epileptic seizure detection using deep learning, indicating a promising direction for future medical technology. Future work will focus on expanding dataset diversity and refining methodologies to build upon these foundational results.

Keywords


Epileptic Seizure Detection; Ictal; Interictal; Convolutional Neural Network; Deep Learning; Long Short-Term Memory; Spectrogram.

Full Text:

PDF

References


S. Jaafar and M. Mohammadi, “Epileptic seizure detection using deep learning approach,” ArXiv, vol. 3, no. 2, pp. 2–7, 2018, doi: 10.21928/uhdjst.v3n2y2019.pp41-50.

M. Zhou et al., “Epileptic seizure detection based on EEG signals and CNN,” Front Neuroinform, vol. 12, pp. 1–14, 2018, doi: 10.3389/fninf.2018.00095.

W. Yang, M. Joo, Y. Kim, S. H. Kim, and J. M. Chung, “Hybrid Machine Learning Scheme for Classification of BECTS and TLE Patients Using EEG Brain Signals,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3038948.

S. J. M. Smith, “EEG in the diagnosis, classification, and management of patients with epilepsy,” Neurology in Practice, vol. 76, no. 2, 2005, doi: 10.1136/jnnp.2005.069245.

M. H. Purnomo, Y. Kristian, E. Setyati, U. Delfana Rosiani, and E. I. Setiawan, "Limitless possibilities of pervasive biomedical engineering: Directing the implementation of affective computing on automatic health monitoring system," 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1-4, 2016, doi: 10.1109/ICITEED.2016.7863314.

S. Supriya, S. Siuly, H. Wang, and Y. Zhang, “Epilepsy Detection From EEG Using Complex Network Techniques: A Review,” IEEE Reviews in Biomedical Engineering, vol. 16. 2023. doi: 10.1109/RBME.2021.3055956.

H. Cui, A. Liu, X. Zhang, X. Chen, J. Liu and X. Chen, "EEG-Based Subject-Independent Emotion Recognition Using Gated Recurrent Unit and Minimum Class Confusion," in IEEE Transactions on Affective Computing, vol. 14, no. 4, pp. 2740-2750, 2023.

T. Daghriri, F. Rustam, W. Aljedaani, A. H. Bashiri, and I. Ashraf, “Electroencephalogram Signals for Detecting Confused Students in Online Education Platforms with Probability-Based Features,” Electronics (Basel), vol. 11, no. 18, p. 2855, 2022.

V. A. S. M. Anala and G. Bhumireddy. Comparison of Machine Learning algorithms on detecting the confusion of students while watching MOOCs. Blekinge Institute of Technology, 2022.

H. Zeng et al., “A lightGBM-based EEG analysis method for driver mental states classification,” Comput. Intell. Neurosci., vol. 2019, 2019.

H. Zeng et al., “InstanceEasyTL: An improved transfer-learning method for EEG-based cross-subject fatigue detection,” Sensors, vol. 20, no. 24, p. 7251, 2020.

Z.-K. Gao, Y.-L. Li, Y.-X. Yang, and C. Ma, “A recurrence network-based convolutional neural network for fatigue driving detection from EEG,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 11, 2019.

R. Chai et al., “Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system,” IEEE J. Biomed. Health Inform., vol. 21, no. 3, pp. 715–724, 2016.

L. Yao, J. L. Baker, N. D. Schiff, K. P. Purpura, and M. Shoaran, “Predicting task performance from biomarkers of mental fatigue in global brain activity,” J. Neural Eng., vol. 18, no. 3, p. 036001, 2021.

Y. Du, Y. Xu, X. Wang, L. Liu, and P. Ma, “EEG temporal–spatial transformer for person identification,” Sci. Rep., vol. 12, no. 1, p. 14378, 2022.

J. Sun et al., “A hybrid deep neural network for classification of schizophrenia using EEG Data,” Sci. Rep., vol. 11, no. 1, p. 4706, 2021.

H. Sun et al., “Automated tracking of level of consciousness and delirium in critical illness using deep learning,” NPJ Digit. Med., vol. 2, no. 1, p. 89, 2019.

M. de Bardeci, C. T. Ip, and S. Olbrich, “Deep learning applied to electroencephalogram data in mental disorders: A systematic review,” Biol. Psychol., vol. 162, p. 108117, 2021.

S. Das et al., “Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: A systematic review,” Prog. Neuropsychopharmacol Biol. Psychiatry, vol. 123, p. 110705, 2023.

K. Y. Halim, D. T. Nugrahadi, M. R. Faisal, R. Herteno, and I. Budiman, “Gender classification based on electrocardiogram signals using long short term memory and bidirectional long short term memory,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 3, pp. 606–618, 2023.

M. F. Maulana, S. Sa’adah, and P. E. Yunanto, “Crude Oil Price Forecasting Using Long Short-Term Memory,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 2, pp. 286–295, 2021.

M. S. Islam et al., “Machine learning-based music genre classification with pre-processed feature analysis,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 7, no. 3, pp. 491–502, 2021.

A. Z. R. Adam and E. B. Setiawan, “Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU),” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 119–131, 2023.

K. A. Tanjaya, M. F. Naufal, and H. Arwoko, “Pilates Pose Classification Using MediaPipe and Convolutional Neural Networks with Transfer Learning,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 2, pp. 212–222, 2023.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

I. Ullah, M. Hussain, E. Qazi, and H. Aboalsamh, “An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland Visual Computing Lab, Department of Computer Science, College of Com,” Expert Syst. Appl., no. 107, pp. 61–71, 2018.

J. Cho and H. Hwang, “Spatio-temporal representation of an electoencephalogram for emotion recognition using a three-dimensional convolutional neural network,” Sensors, vol. 20, no. 12, pp. 1–18, 2020, doi: 10.3390/s20123491.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

J. Kumar, R. Goomer, and A. K. Singh, “Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model for Cloud Datacenters,” Procedia Comput. Sci., vol. 125, pp. 676–682, 2018, doi: 10.1016/j.procs.2017.12.087.

M. Golmohammadi et al., “Gated recurrent networks for seizure detection,” in 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5, 2017.

D. E. Cahyani, A. P. Wibawa, D. D. Prasetya, L. Gumilar, F. Akhbar, and E. R. Triyulinar, “Text-Based Emotion Detection using CNN-BiLSTM,” in 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), pp. 1–5, 2022, doi: 10.1109/ICORIS56080.2022.10031370.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in International conference on machine learning, pp. 448–456, 2015.

K. Fukushima, “Visual feature extraction by a multilayered network of analog threshold elements,” IEEE Transactions on Systems Science and Cybernetics, vol. 5, no. 4, pp. 322–333, 1969.

C. Gómez, P. Arbeláez, M. Navarrete, C. Alvarado-Rojas, M. Le Van Quyen, and M. Valderrama, “Automatic seizure detection based on imaged-EEG signals through fully convolutional networks,” Sci. Rep., vol. 10, no. 1, p. 21833, 2020.

A. Gramacki and J. Gramacki, “A deep learning framework for epileptic seizure detection based on neonatal EEG signals,” Sci. Rep., vol. 12, no. 1, p. 13010, 2022.

T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on document analysis and recognition, pp. 278–282, 1995.

J. Caffarini et al., “Engineering nonlinear epileptic biomarkers using deep learning and Benford’s law,” Sci. Rep., vol. 12, no. 1, p. 5397, 2022.

A. Abdelhameed and M. Bayoumi, “A deep learning approach for automatic seizure detection in children with epilepsy,” Front Comput. Neurosci., vol. 15, p. 650050, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Adv. Neural Inf. Process Syst., vol. 25, 2012.

N. Ilakiyaselvan, A. N. Khan, and A. Shahina, “Deep learning approach to detect seizure using reconstructed phase space images,” J. Biomed. Res., vol. 34, no. 3, p. 240, 2020.

S. Butterworth, “On the theory of filter amplifiers,” Wireless Engineer, vol. 7, no. 6, pp. 536–541, 1930.

F. Hassan, S. F. Hussain, and S. M. Qaisar, “Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data,” J. Healthc. Eng., vol. 2022, 2022.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Adv. Neural Inf. Process Syst., vol. 28, 2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.

K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, pp. 2961–2969, 2017.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, pp. 1440–1448, 2015.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, 2015.

I. Aliyu, Y. B. Lim, and C. G. Lim, “Epilepsy detection in EEG signal U sing recurrent neural network,” ACM International Conference Proceeding Series, pp. 50–53, 2019, doi: 10.1145/3325773.3325785.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Robust LSTM With Tuned-PSO and Bifold-Attention Mechanism for Analyzing Multivariate Time-Series,” IEEE Access, vol. 10, pp. 78423–78434, 2022, doi: 10.1109/ACCESS.2022.3193643.

M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, pp. 1942–1948, 1995.

X. Hu and Q. Yuan, “Epileptic EEG identification based on deep Bi-LSTM network,” in 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), pp. 63–66, 2019.

M. Nasseri et al., “Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning,” Sci. Rep., vol. 11, no. 1, p. 21935, 2021.

A. Saputra, A. Wibawa, U. Pujianto, A. B. P. Utama, and A. Nafalski, “LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting,” ILKOM Jurnal Ilmiah, vol. 14, pp. 57–62, 2022, doi: 10.33096/ilkom.v14i1.1106.57-62.

T. Kimura, K. Takeshita, T. Toyono, M. Yokota, K. Nishimatsu, and T. Mori, “Network failure detection and diagnosis by analyzing syslog and SNS data: Applying big data analysis to network operations,” NTT Technical Review, vol. 11, no. 11, 2013.

A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A decentralized privacy-preserving healthcare blockchain for IoT,” Sensors, vol. 19, no. 2, p. 326, 2019.

F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, “Quantifying uncertainty in internet of medical things and big-data services using intelligence and deep learning,” IEEE Access, vol. 7, pp. 115749–115759, 2019.

G. Nguyen et al., “Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey,” Artif. Intell. Rev., vol. 52, pp. 77–124, 2019.

R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep learning approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41525–41550, 2019.

S. Kumar and M. Singh, “Big data analytics for healthcare industry: impact, applications, and tools,” Big data mining and analytics, vol. 2, no. 1, pp. 48–57, 2018.

L.-M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment of IoV for smart cities: Applications, architecture, and challenges,” IEEE access, vol. 7, pp. 6473–6492, 2018.

B. P. L. Lau et al., “A survey of data fusion in smart city applications,” Information Fusion, vol. 52, pp. 357–374, 2019.

Y. Wu et al., “Large scale incremental learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 374–382, 2019.

A. Mosavi, S. Shamshirband, E. Salwana, K. Chau, and J. H. M. Tah, “Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning,” Engineering Applications of Computational Fluid Mechanics, vol. 13, no. 1, pp. 482–492, 2019.

V. Palanisamy and R. Thirunavukarasu, “Implications of big data analytics in developing healthcare frameworks–A review,” Journal of King Saud University-Computer and Information Sciences, vol. 31, no. 4, pp. 415–425, 2019.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543, 2014.

Y. Ma et al., “A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based on Attention Mechanism,” IEEE Access, vol. 11, pp. 62855–62864, 2023, doi: 10.1109/ACCESS.2023.3287927.

M. Ma et al., “Early Prediction of Epileptic Seizure Based on the BNLSTM-CASA Model,” IEEE Access, vol. 9, pp. 79600–79610, 2021, doi: 10.1109/ACCESS.2021.3084635.

X. Wang, Y. Wang, D. Liu, Y. Wang, and Z. Wang, “Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM,” Sci. Rep., vol. 13, no. 1, p. 14876, 2023.

S. Srinivasan, S. Dayalane, S. kumar Mathivanan, H. Rajadurai, P. Jayagopal, and G. T. Dalu, “Detection and classification of adult epilepsy using hybrid deep learning approach,” Sci. Rep., vol. 13, no. 1, p. 17574, 2023.

X. Cao, B. Yao, B. Chen, W. Sun, and G. Tan, “Automatic seizure classification based on domain-invariant deep representation of EEG,” Front. Neurosci., vol. 15, p. 760987, 2021.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

M. Saqib, Y. Zhu, M. Wang, and B. Beaulieu-Jones, “Regularization of deep neural networks for EEG seizure detection to mitigate overfitting,” in 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 664–673, 2020.

W. A. Mir, M. Anjum, and S. Shahab, “Deep-EEG: an optimized and robust framework and method for EEG-based diagnosis of epileptic seizure,” Diagnostics, vol. 13, no. 4, p. 773, 2023.

A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, “Epileptic seizure detection in EEGs using time-frequency analysis,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 5, pp. 703–710, 2009, doi: 10.1109/TITB.2009.2017939.

M. Hills, “Seizure detection using FFT, temporal and spectral correlation coefficients, eigenvalues and Random Forest,” Github, San Francisco, CA, USA, Tech. Rep, pp. 1–10, 2014.

K. Tsuru and G. Pfurtscheller, “Brainwave Biometrics: A New Feature Extraction Approach with the Cepstral Analysis Method,” Biomedical Engineering, vol. 50, no. 1, pp. 162–167, 2012, doi: 10.11239/jsmbe.50.162.

T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and F. E. A. El-Samie, “EEG seizure detection and prediction algorithms: a survey,” EURASIP J. Adv. Signal Process., vol. 2014, no. 1, pp. 1–21, 2014, doi: 10.1186/1687-6180-2014-183.

I. A. E. Zaeni, U. Pujianto, A. R. Taufani, M. Jiono, and P. S. T. Muhammad, “Concentration Level Detection Using EEG Signal on Reading Practice Application,” in 2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE), pp. 354–357, 2019. doi: 10.1109/ICEEIE47180.2019.8981453.

A. Rochmah, S. Sendari, and I. A. E. Zaeni, “Sleepiness Detection For The Driver Using Single Channel EEG With Artificial Neural Network,” in 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), pp. 80–85, 2019. doi: 10.1109/ICAMIMIA47173.2019.9223371.

M. Yazid et al., “Simple Detection of Epilepsy from EEG Signal Using Local Binary Pattern Transition Histogram,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3126065.

A. Bhattacharyya and R. B. Pachori, "A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform," in IEEE Transactions on Biomedical Engineering, vol. 64, no. 9, pp. 2003-2015, 2017, doi: 10.1109/TBME.2017.2650259.

Y. Zhang, S. Yang, Y. Liu, Y. Zhang, B. Han, and F. Zhou, “Integration of 24 feature types to accurately detect and predict seizures using scalp EEG signals,” Sensors, vol. 18, no. 5, 2018, doi: 10.3390/s18051372.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

S. Montaha, S. Azam, A. K. M. R. H. Rafid, M. Z. Hasan, A. Karim, and A. Islam, “TimeDistributed-CNN-LSTM: A Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor on 3D MRI Scans Performing Ablation Study,” IEEE Access, vol. 10, pp. 60039–60059, 2022, doi: 10.1109/ACCESS.2022.3179577.

M. Berendt, H. Høgenhaven, A. Flagstad, and M. Dam, “Electroencephalography in dogs with epilepsy: Similarities between human and canine findings,” Acta Neurol Scand, vol. 99, no. 5, pp. 276–283, 1999, doi: 10.1111/j.1600-0404.1999.tb00676.x.

I. E. Leppik, E. N. Patterson, L. D. Coles, E. M. Craft, and J. C. Cloyd, “Canine status epilepticus: A translational platform for human therapeutic trials,” Epilepsia, vol. 52, no. 8, pp. 31–34, 2011, doi: 10.1111/j.1528-1167.2011.03231.x.

A. Catala, M. Grandgeorge, J. L. Schaff, H. Cousillas, M. Hausberger, and J. Cattet, “Dogs demonstrate the existence of an epileptic seizure odour in humans,” Sci. Rep., vol. 9, no. 1, pp. 1–7, 2019, doi: 10.1038/s41598-019-40721-4.

B. H. Brinkmann et al., “Crowdsourcing reproducible seizure forecasting in human and canine epilepsy,” Brain, vol. 139, no. 6, pp. 1713–1722, 2016, doi: 10.1093/brain/aww045.

L. Kuhlmann et al., “Epilepsyecosystem.org: Crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG,” Brain, vol. 141, no. 9, pp. 2619–2630, 2018, doi: 10.1093/brain/awy210.

R. Jaswal, “Brain Wave Classification and Feature Extraction of EEG Signal by Using FFT on Lab View,” International Research Journal of Engineering and Technology, pp. 1208–1212, 2016.

P. A. Abhang, B. W. Gawali, and S. C. Mehrotra. Introduction to EEG- and Speech-Based Emotion Recognition. Academic Press. 2016. doi: 10.1016/C2015-0-01959-1.

P. Heckbert, “Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm,” Notes Computer Graphics, vol. 3, no. 2, pp. 15–463, 1995.

J. Cho and H. Hwang, “Spatio-temporal representation of an electoencephalogram for emotion recognition using a three-dimensional convolutional neural network,” Sensors, vol. 20, no. 12, pp. 1–18, 2020, doi: 10.3390/s20123491.

I. Aliyu, Y. B. Lim, and C. G. Lim, “Epilepsy detection in EEG signal U sing recurrent neural network,” ACM International Conference Proceeding Series, pp. 50–53, 2019, doi: 10.1145/3325773.3325785.

M. Golmohammadi et al., "Gated recurrent networks for seizure detection," 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1-5, 2017, doi: 10.1109/SPMB.2017.8257020.

A. Ciurea, C.-P. Manoila, A.-M. Tautan, and B. Ionescu, “Low Latency Automated Epileptic Seizure Detection: Individualized vs. Global Approaches,” in 2020 International Conference on e-Health and Bioengineering (EHB), pp. 1–4, 2020, doi: 10.1109/EHB50910.2020.9280267.

N. D. Truong et al., “Integer Convolutional Neural Network for Seizure Detection,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 8, no. 4, pp. 849–857, 2018, doi: 10.1109/JETCAS.2018.2842761.

Y. Shen, “Machine Learning Based Epileptic Seizure Detection for Responsive Neurostimulator System Optimization,” J. Phys. Conf. Ser., vol. 1453, no. 1, p. 12089, 2020, doi: 10.1088/1742-6596/1453/1/012089.

L. Kuhlmann, LizLopez, M. O'Connell, rudyno5, S. Wang, and W. Cukierski. Melbourne University AES/MathWorks/NIH Seizure Prediction. Kaggle, 2016.




DOI: https://doi.org/10.18196/jrc.v5i1.20870

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Arya Tandy Hermawan, Ilham Ari Elbaith Zaeni, Aji Prasetya Wibawa, Gunawan Gunawan, William Hartanto Hendrawan, Yosi Kristian

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik