Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology

Heru Nurwarsito, Didik Suprayogo, Setyawan P. Sakti, Cahyo Prayogo, Simon Oakley, Aji Prasetya Wibawa, Resnu Wahyu Adaby

Abstract


Microclimate monitoring in agroforestry is very important to understand the complex interactions between vegetation, soil, and the environment. Microclimate parameters include air and soil temperature, air humidity, soil moisture, and light intensity. This research aims to develop a new microclimate data recording system for coffee-pine agroforestry, utilizing LoRaWAN and IoT technology to capture real-time microclimate parameters. Unlike traditional data loggers that require manual download on-site, this innovative system enables instant data download from IoT servers, thereby increasing data efficiency and accessibility. The system proved effective, significantly improving the precision of air temperature and humidity, as well as soil temperature measurements, with an average accuracy of 100%. However, soil moisture and light intensity recorded lower accuracies of 81.23% and 82.56%, respectively, indicating potential areas for future research and system refinement. The system maintains a 15-minute sampling period, aligning with conventional datalogger intervals. This represents an advancement in precision agriculture for microclimate monitoring, enabling the data to be utilized in decision-making for agroforestry management, which involves complex interactions between the local microclimate and the broader ecological system. It underscores the significance of sustainable land use as a response to global climate change.


Keywords


Microclimate Monitoring; Coffee-Pine Agroforestry; Lorawan; IoT.

Full Text:

PDF

References


R. Rowe et al., “Improved Coffee Management by Farmers in State Forest Plantations in Indonesia: An Experimental Platform,” Land, vol. 11, no. 5, p. 671, 2022, doi: 10.3390/land11050671.

A. Fitch et al., “The coffee compromise: is agricultural expansion into tree plantations a sustainable option?,” Sustainability, vol. 14, no. 5, p. 3019, 2022.

C. Prayogo, N. Sholehuddin, E. Z. H. S. Putra, and R. Rachmawati, “Soil Macrofauna Diversity and Structure Under Different Management of Pine-Coffee Agroforestry System,” Journal of Degraded and Mining Lands Management, vol. 6, no. 3, p. 1727, 2019, doi: 10.15243/jdmlm.2019.063.1727.

R. Imanuddin et al., “Reforestation and Sustainable Management of Pinus Merkusii Forest Plantation in Indonesia: A Review,” Forests, vol. 11, no. 12, p. 1235 2020, doi: 10.3390/f11121235.

S. Kay et al., “Agroforestry is paying off–Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems,” Ecosyst Serv, vol. 36, p. 100896, 2019.

S. E. Castle, D. C. Miller, N. Merten, P. J. Ordonez, and K. Baylis, “Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: a systematic map,” Environ Evid, vol. 11, no. 1, pp. 1–27, 2022.

K. A. Sudharta et al., “Soil Organic Matter and Nitrogen in Varying Management Types of Coffee-Pine Agroforestry Systems and Their Effect on Coffee Bean Yield,” Biodiversitas, vol. 23, no. 11, 2022, doi: 10.13057/biodiv/d231142.

S. R. Jacobs et al., “Modification of the microclimate and water balance through the integration of trees into temperate cropping systems,” Agric For Meteorol, vol. 323, p. 109065, 2022.

P. De Frenne et al., “Forest microclimates and climate change: Importance, drivers and future research agenda,” Glob Chang Biol, vol. 27, no. 11, pp. 2279–2297, 2021.

P. De Frenne et al., “Forest Microclimates and Climate Change: Importance, Drivers and Future Research Agenda,” Global Change Biology., vol. 27, no. 11, pp. 2279-2297, 2021. doi: 10.1111/gcb.15569.

I. Abdulai et al., “Cocoa agroforestry is less resilient to sub‐optimal and extreme climate than cocoa in full sun,” Glob Chang Biol, vol. 24, no. 1, pp. 273–286, 2018.

A. Armstrong, N. J. Ostle, and J. Whitaker, “Solar Park Microclimate and Vegetation Management Effects on Grassland Carbon Cycling,” Environmental Research Letters, vol. 11, no. 7, p. 074016, 2016, doi: 10.1088/1748-9326/11/7/074016.

T. Jucker et al., “Canopy Structure and Topography Jointly Constrain the Microclimate of Human‐modified Tropical Landscapes,” Glob. Chang. Biol., vol. 24, no. 11, pp. 5243-5258, 2018, doi: 10.1111/gcb.14415.

M. A. Ahmed et al., “LoRa Based IoT Platform for Remote Monitoring of Large-Scale Agriculture Farms in Chile,” Sensors, vol. 22, no. 8, p. 2824, 2022, doi: 10.3390/s22082824.

H. Klaina et al., “Analysis of low power wide area network wireless technologies in smart agriculture for large-scale farm monitoring and tractor communications,” Measurement, vol. 187, p. 110231, 2022.

S. Sharma, K. Sato, and B. P. Gautam, “A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques,” Sustainability, vol. 15, no. 9, p. 7128, 2023, doi: 10.3390/su15097128.

J. J. Lembrechts, I. Nijs, and J. Lenoir, “Incorporating Microclimate Into Species Distribution Models,” Ecography, vol. 42, no. 7, pp. 1267-1279, 2018, doi: 10.1111/ecog.03947.

R. Schouten, P. A. Vesk, and M. R. Kearney, “Integrating dynamic plant growth models and microclimates for species distribution modelling,” Ecol Modell, vol. 435, p. 109262, 2020.

O. A. Agbolade, F. M. Dahunsi, and S. A. Oyetunji, “Heterogeneous LoRaWan Deployment for Application Dependent IOT Networks,” Itegam- Journal of Engineering and Technology for Industrial Applications (Itegam-Jetia), 2022, doi: 10.5935/jetia.v8i34.798.

D. Suprayogo et al., “Tree and plant interactions in the agroforestry system: does the management of coffee intensification disrupt the soil hydrological system and pine growth?,” in IOP Conference Series: Earth and Environmental Science, vol. 449, no. 1, p. 012045, 2020.

B. Achmad et al., “Traditional subsistence farming of smallholder agroforestry systems in Indonesia: A review,” Sustainability, vol. 14, no. 14, p. 8631, 2022.

D. Suprayogo et al., “Tree and Plant Interactions in the Agroforestry System: Does the Management of Coffee Intensification Disrupt the Soil Hydrological System and Pine Growth?,” IOP Conf. Ser. Earth Environ. Sci., vol. 449, no. 1, p. 012045, 2020, doi: 10.1088/1755-1315/449/1/012045.

J. P. Sheppard et al., “Agroforestry: an appropriate and sustainable response to a changing climate in Southern Africa?,” Sustainability, vol. 12, no. 17, p. 6796, 2020.

G. Pavlidis and V. A. Tsihrintzis, “Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: a review,” Water Resources Management, vol. 32, pp. 1–29, 2018.

E. Cahyono et al., “Agroforestry Innovation Through Planned Farmer Behavior: Trimming in Pine–Coffee Systems,” Land, vol. 9, no. 10, p. 363, 2020, doi: 10.3390/land9100363.

M. R. Kearney, “MicroclimOz – A Microclimate Data Set for Australia, With Example Applications,” Austral Ecol., vol. 44, no. 3, pp. 534-544, 2018, doi: 10.1111/aec.12689.

S. L. Tuck, H. R. P. Phillips, R. E. Hintzen, J. P. W. Scharlemann, A. Purvis, and L. N. Hudson, “MODIST ools–downloading and processing MODIS remotely sensed data in R,” Ecology and evolution, vol. 4, no. 24, pp. 4658-4668, 2014, doi: 10.1002/ece3.1273.

M. Man et al., “myClim: Microclimate data handling and standardised analyses in R,” Methods in Ecology and Evolution, vol. 14, no. 9, pp. 2308-2320, 2023, doi: 10.1111/2041-210x.14192.

F. Zellweger, P. De Frenne, J. Lenoir, D. Rocchini, and D. A. Coomes, “Advances in Microclimate Ecology Arising From Remote Sensing,” Trends Ecol. Evol., vol. 34, no. 4, pp. 327-341, 2019, doi: 10.1016/j.tree.2018.12.012.

T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. Andrieux, “Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN,” Sensors, vol. 18, no. 7, p. 2104, 2018, doi: 10.3390/s18072104.

L. E. Muñoz-Villers, J. Geris, M. S. Alvarado-Barrientos, F. Holwerda, and T. Dawson, “Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem,” Hydrol Earth Syst Sci, vol. 24, no. 4, pp. 1649–1668, 2020, doi: 10.5194/hess-24-1649-2020.

D. Penna, J. Geris, L. Hopp, and F. Scandellari, “Water Sources for Root Water Uptake: Using Stable Isotopes of Hydrogen and Oxygen as a Research Tool in Agricultural and Agroforestry Systems,” Agric. Ecosyst. Environ., vol. 291, p. 106790, 2020, doi: 10.1016/j.agee.2019.106790.

S. Yao, “Construction of a Wireless Sensing Network System for Leisure Agriculture for Cloud-Based Agricultural Internet of Things,” J. Sens., vol. 2021, pp. 1-11, 2021, doi: 10.1155/2021/3021771.

A. E. B. Lacerda, A. L. Hanisch, and E. R. Nimmo, “Leveraging traditional agroforestry practices to support sustainable and agrobiodiverse landscapes in Southern Brazil,” Land (Basel), vol. 9, no. 6, p. 176, 2020.

H. Bates, M. Pierce, and A. Benter, “Real-Time Environmental Monitoring for Aquaculture Using a LoRaWAN-Based IoT Sensor Network,” Sensors, vol. 21, no. 23, p. 7963, 2021, doi: 10.3390/s21237963.

I. M. D. Maclean, J. R. Mosedale, and J. Bennie, “Microclima: An Package for Modelling Meso‐ and Microclimate,” Methods Ecol. Evol., vol. 10, no. 2, pp. 280-290, 2018, doi: 10.1111/2041-210x.13093.

C. Marsden, A. Martin-Chave, J. Cortet, M. Hedde, and Y. Capowiez, “How agroforestry systems influence soil fauna and their functions-a review,” Plant Soil, vol. 453, pp. 29–44, 2020.

M. van Noordwijk et al., “Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley,” Mitig. Adapt. Strateg. Glob. Chang., vol. 26, no. 5, p. 18, 2021.

Z. A. Latif and G. A. Blackburn, “The Effects of Gap Size on Some Microclimate Variables During Late Summer and Autumn in a Temperate Broadleaved Deciduous Forest,” Int. J. Biometeorol., vol. 54, pp. 119-129, 2009, doi: 10.1007/s00484-009-0260-1.

R. M. Ewers and C. Banks-Leite, “Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests,” PLoS One, vol. 8, no. 3, p. e58093, 2013, doi: 10.1371/journal.pone.0058093.

I. M. D. Maclean, J. J. Hopkins, J. Bennie, C. R. Lawson, and R. J. Wilson, “Microclimates Buffer the Responses of Plant Communities to Climate Change,” Global Ecology and Biogeography, vol. 24, no. 11, pp. 1340-1350, 2015, doi: 10.1111/geb.12359.

H. Tran-Dang, N. Krommenacker, P. Charpentier, and D.-S. Kim, “Toward the internet of things for physical internet: Perspectives and challenges,” IEEE Internet Things J., vol. 7, no. 6, pp. 4711–4736, 2020.

C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V Vasilakos, “Fog computing for sustainable smart cities: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1-43, 2017, doi: 10.1145/3057266.

K. Gulati, R. S. K. Boddu, D. Kapila, S. L. Bangare, N. Chandnani, and G. Saravanan, “A review paper on wireless sensor network techniques in Internet of Things (IoT),” Mater. Today Proc., vol. 51, pp. 161–165, 2022.

P. P. Ray, “A survey on Internet of Things architectures,” Journal of King Saud University-Computer and Information Sciences, vol. 30, no. 3, pp. 291–319, 2018.

I. Alam et al., “IoT virtualization: A survey of software definition & function virtualization techniques for internet of things,” arXiv preprint arXiv:1902.10910, 2019.

D. Setiadi and M. N. A. Muhaemin, “Penerapan Internet Of Things (IoT) Pada Sistem Monitoring Irigasi (Smart Irigasi).,” Infotronik: Jurnal Teknologi Informasi dan Elektronika, vol. 3, no. 2, pp. 95–102, 2018.

S. Devalal and A. Karthikeyan, “LoRa technology-an overview,” in 2018 second international conference on electronics, communication and aerospace technology (ICECA), pp. 284–290, 2018.

F. Montori, L. Bedogni, M. Di Felice, and L. Bononi, “Machine-to-machine wireless communication technologies for the Internet of Things: Taxonomy, comparison and open issues,” Pervasive Mob. Comput., vol. 50, pp. 56–81, 2018.

A. J. Onumanyi, A. M. Abu-Mahfouz, and G. P. Hancke, “Low power wide area network, cognitive radio and the Internet of Things: Potentials for integration,” Sensors, vol. 20, no. 23, p. 6837, 2020.

H. Nurwarsito, K. Adam, C. Prayogo, and S. Oakley, “Development of Multi-Point LoRa Network with LoRaWAN Protocol,” in 2021 8th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), pp. 225–230, 2021.

LoRa Alliance. Whitepaper: LoRaWAN. LoRa Alliance, 2015.

O. Khutsoane, B. Isong, N. Gasela, and A. M. Abu-Mahfouz, “Watergrid-sense: A lora-based sensor node for industrial iot applications,” IEEE Sens. J., vol. 20, no. 5, pp. 2722–2729, 2019.

R. O. Andrade and S. G. Yoo, “A comprehensive study of the use of LoRa in the development of smart cities,” Applied Sciences, vol. 9, no. 22, p. 4753, 2019.

A. A. Taha, M. F. Feteiha, and W. Abdul, “Performance evaluation for LoRa transceiver,” International Journal of Computer Science and Software Engineering, vol. 8, no. 2, pp. 25–39, 2019.

J. Dias and A. Grilo, “LoRaWAN multi-hop uplink extension,” Procedia Comput. Sci., vol. 130, pp. 424–431, 2018.

A. Valente, C. F. Costa, L. S. Pereira, B. Soares, J. Lima, and S. Soares, “A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination,” Agriculture, vol. 12, no. 10, p. 1695, 2022, doi: 10.3390/agriculture12101695.

N. Bristow, S. Rengaraj, D. R. Chadwick, J. Kettle, and D. L. Jones, “Development of a LoRaWAN IoT Node With Ion-Selective Electrode Soil Nitrate Sensors for Precision Agriculture,” Sensors, vol. 22, no. 23, p. 9100, 2022, doi: 10.3390/s22239100.

M. Erraguntla et al., “Predictive Model for Microclimatic Temperature and Its Use in Mosquito Population Modeling,” Sci. Rep., vol. 11, no. 1, p. 18909, 2021, doi: 10.1038/s41598-021-98316-x.

A. E. Khaled and S. Helal, “Interoperable communication framework for bridging RESTful and topic-based communication in IoT,” Future Generation Computer Systems, vol. 92, pp. 628–643, 2019.

S. P. Mathews and R. R. Gondkar, “Protocol recommendation for message encryption in MQTT,” in 2019 International Conference on Data Science and Communication (IconDSC), pp. 1–5, 2019.

C. Rattanapoka, S. Chanthakit, A. Chimchai, and A. Sookkeaw, "An MQTT-based IoT Cloud Platform with Flow Design by Node-RED," 2019 Research, Invention, and Innovation Congress (RI2C), pp. 1-6, 2019, doi: 10.1109/RI2C48728.2019.8999942.

O. Blazy, E. Conchon, M. Klingler, and D. Sauveron, “An iot attribute-based security framework for topic-based publish/subscribe systems,” IEEE Access, vol. 9, pp. 19066–19077, 2021.

D. Soni and A. Makwana, “A survey on mqtt: a protocol of internet of things(IoT),” International Conference on Telecommunication, Power Analysis and Computing Techniques (Ictpact - 2017), pp. 0–5, 2017.

M. Benammar, A. Abdaoui, S. H. M. Ahmad, F. Touati, and A. Kadri, “A modular IoT platform for real-time indoor air quality monitoring,” Sensors, vol. 18, no. 2, p. 581, 2018.

M. Manikandeshwar, “Computer Hardware - An Overview,” International Journal of Science and Research, vol. 4, no. 10, pp. 2319–7064, 2013.

Espressif. Esp32¬wroom¬32. Espressif Systems, 2021.

D. Kunda, S. Chihana, and S. Muwanei, “Web Server Performance of Apache and Nginx : A Systematic Literature Review Web Server Performance of Apache and Nginx : A Systematic Literature Review,” Computer Engineering and Intelligent Systems, vol. 8, no. 2, pp. 43-52, 2017.

S. Rezvani et al., “IoT-Based Sensor Data Fusion for Determining Optimality Degrees of Microclimate Parameters in Commercial Greenhouse Production of Tomato,” Sensors, vol. 20, no. 22, p. 6474, 2020, doi: 10.3390/s20226474.

K. de Sousa, M. van Zonneveld, M. Holmgren, R. Kindt, and J. C. Ordoñez, “The future of coffee and cocoa agroforestry in a warmer Mesoamerica,” Scientific Reports, vol. 9, no. 1, p. 8828, 2019, doi: 10.1038/s41598-019-45491-7.

E. Kudryashova and M. Casetti, “The Internet of Things - The Nearest Future of Viticulture,” Agris. on-Line Papers in Economics and Informatics, vol. 13, no. 2, pp. 79-86, 2021, doi: 10.7160/aol.2021.130206.

N. Bafdal, I. Ardiansah, and S. Asmara, “Application of Internet of Things (IoT) on Microclimate Monitoring System in the ALG Unpad Greenhouse Based on Raspberry Pi,” Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), vol. 11, no. 3, pp. 518-530, 2022, doi: 10.23960/jtep-l.v11i3.518-530.

J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa Scalability: A Simulation Model Based on Interference Measurements,” Sensors, vol. 17, no. 6, p. 1193, 2017, doi: 10.3390/s17061193.

C. Malings et al., “Development of a General Calibration Model and Long-Term Performance Evaluation of Low-Cost Sensors for Air Pollutant Gas Monitoring,” Atmos. Meas. Tech., vol. 12, no. 2, pp. 903-920, 2019, doi: 10.5194/amt-12-903-2019.

H. S. Russell et al., “Enhanced Ambient Sensing Environment—A New Method for Calibrating Low-Cost Gas Sensors,” Sensors, vol. 22, no. 19, p. 7238, 2022, doi: 10.3390/s22197238.

J. Ndikumagenge and V. Ntirandekura, “Development of a Quantitative Prediction Support System Using the Linear Regression Method,” Journal of Applied Mathematics and Physics, vol. 11, no. 2, pp. 421-427, 2023, doi: 10.4236/jamp.2023.112024.

G.-S. Kim and C. Kim, “Calibration of Environmental Sensor Data Using a Linear Regression Technique,” International Journal of Trend in Scientific Research and Development, vol. 2, no. 1, 2017, doi: 10.31142/ijtsrd7060.

K. J. Hoffer et al., “Protocols for studies of intraocular lens formula accuracy,” Am. J. Ophthalmol., vol. 160, no. 3, pp. 403–405, 2015.

P. Ferrer-Cid, J. M. Barceló-Ordinas, J. García-Vidal, A. Ripoll, and M. Viana, “Multisensor Data Fusion Calibration in IoT Air Pollution Platforms,” IEEE Internet Things J., vol. 7, no. 4, pp. 3124-3132, 2020, doi: 10.1109/jiot.2020.2965283.

H. Kim, M. Müller, S. Henne, and C. Hüglin, “Long-term behavior and stability of calibration models for NO and NO 2 low-cost sensors,” Atmospheric Measurement Techniques, vol. 15, no. 9, pp. 2979-2992, 2022.

S. S. Vasconcelos et al., “Moisture and Substrate Availability Constrain Soil Trace Gas Fluxes in an Eastern Amazonian Regrowth Forest,” Global Biogeochem Cycles, vol. 18, no. 2, 2004, doi: 10.1029/2003gb002210.

O. Merlin, A. Al Bitar, V. Rivalland, P. Béziat, É. Ceschia, and G. Dedieu, “An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces With an Arbitrary Thickness,” J. Appl. Meteorol. Climatol., vol. 50, no. 2, pp. 457-471, 2011, doi: 10.1175/2010jamc2418.1.

D. Krzeminska, S. Steele‐Dunne, T. Bogaard, M. Rutten, P. Sailhac, and Y. Géraud, “High‐resolution Temperature Observations to Monitor Soil Thermal Properties as a Proxy for Soil Moisture Condition in Clay‐shale Landslide,” Hydrol. Process., vol. 26, no. 14, pp. 2143-2156, 2011, doi: 10.1002/hyp.7980.

S. Lisovski, C. Hewson, R. H. G. Klaassen, F. Korner-Nievergelt, M. Willemoes, and S. Hahn, “Geolocation by Light: Accuracy and Precision Affected by Environmental Factors,” Methods Ecol. Evol., vol. 3, no. 3, pp. 603-612, 2012, doi: 10.1111/j.2041-210x.2012.00185.x.

M. H. Long, J. E. Rheuban, P. Berg, and J. C. Zieman, “A Comparison and Correction of Light Intensity Loggers to Photosynthetically Active Radiation Sensors,” Limnology and Oceanography: Methods, vol. 10, no. 6, pp. 416-424, 2012, doi: 10.4319/lom.2012.10.416.

J. Sikora, M. Gliniak, U. Sadowska, A. Klimek-Kopyra, and A. E. Latawiec, “Time-Domain Reflectometry (TDR) in Mapping Soil Temperature and Humidity,” E3s Web of Conferences, vol. 132, p. 02007, 2019, doi: 10.1051/e3sconf/201913202007.

J. Huang, D. Liu, and Y. Qi, “An Anthurium Growth Environment Monitoring System Based on Wireless Sensor Network,” International Journal of Online and Biomedical Engineering (Ijoe), vol. 15, no. 5, 2019, doi: 10.3991/ijoe.v15i05.9382.

T. Seifert, J. Martin, T. Seider, M. Wiemer, and T. Otto, “Additive Manufacturing of Capacitive Humidity Sensors by Screen Printing for Condition Monitoring of FRP Composites,” Technologies for Lightweight Structures (Tls), vol. 1, no. 2, pp. 197-207, 2022, doi: 10.21935/tls.v1i2.104.

J. M. Ressia, M. L. Cortés, Y. Villacampa, and P. Sastre-Vázquez, “Models to Estimate the Mechanical Resistance to Penetration in Argentine Agricultural Soils,” WIT Transactions on Ecology and the Environment, vol. 192, pp. 13-22, 2015, doi: 10.2495/eco150021.

R. Morais, J. Mendes, R. Silva, N. Silva, J. J. Sousa, and E. Peres, “A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices,” Agriculture, vol. 11, no. 7, p. 619, 2021, doi: 10.3390/agriculture11070619.

J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A Survey of LoRaWAN for IoT: From Technology to Application,” Sensors, vol. 18, no. 11, p. 3995, 2018, doi: 10.3390/s18113995.

D. Bimschas, H. Hellbrück, R. Mietz, D. Pfisterer, K. U. Römer, and T. Teubler, “Middleware for Smart Gateways Connecting Sensornets to the Internet,” Proceedings of the 5th International Workshop on Middleware Tools, Services and Run-Time Support for Sensor Networks, pp. 8-14, 2010, doi: 10.1145/1890784.1890787.

B. Myagmardulam et al., “Performance Evaluation of LoRa 920 MHz Frequency Band in a Hilly Forested Area,” Electronics, vol. 10, no. 4, p. 502, 2021, doi: 10.3390/electronics10040502.

A. Ferreira, F. M. Ortiz, L. H. M. K. Costa, B. Foubert, I. Amadou, and N. Mitton, “A Study of the LoRa Signal Propagation in Forest, Urban, and Suburban Environments,” Annals of Telecommunications - Annales Des Télécommunications, vol. 75, pp. 333-351, 2020, doi: 10.1007/s12243-020-00789-w.

O. A. Saraereh, A. Alsaraira, I. Khan, and P. Uthansakul, “Performance Evaluation of UAV-Enabled LoRa Networks for Disaster Management Applications,” Sensors, vol. 20, no. 8, p. 2396, 2020, doi: 10.3390/s20082396.

E. E. A. Sallum, N. Pereira, M. Alves, and M. M. D. Santos, “Improving Quality-of-Service in LoRa Low-Power Wide-Area Networks Through Optimized Radio Resource Management,” Journal of Sensor and Actuator Networks, vol. 9, no. 1, p. 10, 2020, doi: 10.3390/jsan9010010.

W. Yin, G. Guo, G. Tian, and W. Liu, “A Model With Leaf Area Index and Trunk Diameter for LoRaWAN Radio Propagation in Eastern China Mixed Forest,” J. Sens., vol. 2020, pp. 1-16, 2020, doi: 10.1155/2020/2687148.

V. A. Dambal, S. Mohadikar, A. Kumbhar, and İ. Güvenç, “Improving LoRa Signal Coverage in Urban and Sub-Urban Environments With UAVs,” 2019 International Workshop on Antenna Technology (iWAT), pp. 210-213, 2019, doi: 10.1109/iwat.2019.8730598.

Z. Ali, K. N. Qureshi, A. S. Al-Shamayleh, A. Akhunzada, A. Raza, and M. F. U. Butt, “Delay Optimization in LoRaWAN by Employing Adaptive Scheduling Algorithm With Unsupervised Learning,” IEEE Access, vol. 11, pp. 2545-2556, 2023, doi: 10.1109/access.2023.3234188.

R. Liang, L. Zhao, and P. Wang, “Performance Evaluations of LoRa Wireless Communication in Building Environments,” Sensors, vol. 20, no. 14, p. 3828, 2020, doi: 10.3390/s20143828.

J. Cecílio, P. Ferreira, and A. Casimiro, “Evaluation of LoRa Technology in Flooding Prevention Scenarios,” Sensors, vol. 20, no. 14, p. 4034, 2020, doi: 10.3390/s20144034.

M. S. Danladi and M. Baykara, “Design and Implementation of Temperature and Humidity Monitoring System Using LPWAN Technology,” Ingénierie Des Systèmes D Information, vol. 27, no. 4, pp. 521-529, 2022, doi: 10.18280/isi.270401.

P. Spadaccino, F. G. Crinó, and F. Cuomo, “LoRaWAN Behaviour Analysis Through Dataset Traffic Investigation,” Sensors, vol. 22, no. 7, p. 2470, 2022, doi: 10.3390/s22072470.

G. Di Renzone, E. Landi, M. Mugnaini, L. Parri, G. Peruzzi, and A. Pozzebon, “Assessment of LoRaWAN Transmission Systems Under Temperature and Humidity, Gas, and Vibration Aging Effects Within IIoT Contexts,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1-11, 2022, doi: 10.1109/tim.2021.3137568.

O. Afisiadis, M. Cotting, A. Burg, and A. Balatsoukas‐Stimming, “On the Error Rate of the LoRa Modulation With Interference,” IEEE Trans. Wirel. Commun., vol. 19, no. 2, pp. 1292-1304, 2020, doi: 10.1109/twc.2019.2952584.

M. H. M. Ghazali, K. Teoh, and W. Rahiman, “A Systematic Review of Real-Time Deployments of UAV-Based LoRa Communication Network,” IEEE Access, vol. 9, pp. 124817-124830, 2021, doi: 10.1109/access.2021.3110872.

A. H. Quiñonez-Rodríguez, I. Sosa-Tinoco, E. Ruiz-Ibarra, and A. Robles-Morúa, “Development of a Low-Cost and Low-Power Air Quality and Weather Monitoring System,” Journal Urban-Rural and Regional Economy, vol. 6, no. 10, pp. 1-11, 2021, doi: 10.35429/jurre.2022.10.6.1.11.

M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things: Taxonomies and Open Challenges,” Mobile Networks and Applications, vol. 24, pp. 796-809, 2018, doi: 10.1007/s11036-018-1089-9.

I. Bouazzi, M. Zaidi, M. Usman, M. Z. M. Shamim, V. K. Gunjan, and N. Singh, “Future Trends for Healthcare Monitoring System in Smart Cities Using LoRaWAN-Based WBAN,” Mobile Information Systems, vol. 2022, 2022, doi: 10.1155/2022/1526021.

A. Al Ghamdi, E. F. Khairullah, and M. Al Mojamed, “LoRaWAN Performance Analysis for a Water Monitoring and Leakage Detection System in a Housing Complex,” Sensors, vol. 22, no. 19, p. 7188, 2022, doi: 10.3390/s22197188.

T. M. Kadarina and R. Priambodo, “Performance Evaluation of IoT-based SpO2 Monitoring Systems for COVID-19 Patients,” Journal of Electronics Electromedical Engineering and Medical Informatics, vol. 3, no. 2, pp. 64-71, 2021, doi: 10.35882/jeeemi.v3i2.1.

F. Qaisar, H. Shahab, M. Iqbal, H. M. Sargana, M. Aqeel, and M. A. Qayyum, “Recent Trends in Cloud Computing and IoT Platforms for IT Management and Development: A Review,” Pakistan Journal of Engineering and Technology, vol. 6, no. 1, pp. 98-105, 2023, doi: 10.51846/vol6iss1pp98-105.

M. Abomhara and G. M. Køien, “Security and Privacy in the Internet of Things: Current Status and Open Issues,” 2014 international conference on privacy and security in mobile systems (PRISMS), pp. 1-8, 2014, doi: 10.1109/prisms.2014.6970594.

M. Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar, “Secure MQTT for Internet of Things (IoT),” 2015 fifth international conference on communication systems and network technologies, pp. 746-751, 2015, doi: 10.1109/csnt.2015.16.

Y. Kim, B. Mendoza, O. Kwon, and J. Yoon, “Task-Specific Feature Selection and Detection Algorithms for IoT-Based Networks,” Journal of Computer and Communications, vol. 10, no. 10, pp. 59-73, 2022, doi: 10.4236/jcc.2022.1010005.




DOI: https://doi.org/10.18196/jrc.v5i1.20991

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Heru Nurwarsito, Didik Suprayogo, Setyawan Purnomo Sakti, Cahyo Prayogo, Simon Oakley, Aji Prasetya Wibawa, Resnu Wahyu Adaby

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik