Model Predictive Control Design under Stochastic Parametric Uncertainties Based on Polynomial Chaos Expansions for F-16 Aircraft
Abstract
Keywords
Full Text:
PDFReferences
V. B. V. Nghia, T. Van Thien, N. N. Son, and M. T. Long, “Adaptive neural sliding mode control for two wheel self balancing robot,” Int. J. Dyn. Control, vol. 10, no. 3, pp. 771–784, 2022.
D. T. Tran, N. M. Hoang, N. H. Loc, Q. T. Truong, and N. T. Nha, “A Fuzzy LQR PID Control for a Two-Legged Wheel Robot with Uncertainties and Variant Height,” J. Robot. Control, vol. 4, no. 5, pp. 612–620, 2023.
Y. Wan, D. E. Shen, S. Lucia, R. Findeisen, and R. D. Braatz, “A Polynomial Chaos Approach to Robust Static Output-Feedback Control With Bounded Truncation Error,” IEEE Trans. Automat. Contr., vol. 68, no. 1, pp. 470–477, 2022.
W. Sun, S.-F. Su, J. Xia, and Y. Wu, “Adaptive tracking control of wheeled inverted pendulums with periodic disturbances,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1867–1876, 2018.
S. Subramanian, S. Lucia, R. Paulen, and S. Engell, “Tube-enhanced multi-stage model predictive control for flexible robust control of constrained linear systems with additive and parametric uncertainties,” Int. J. Robust Nonlinear Control, vol. 31, no. 9, pp. 4458–4487, 2021.
R. Jaiswal and O. Prakash, “Classical and Modern gain estimation approach of PID controller for the pitch control of the RCTA aircraft,” INCAS Bull., vol. 14, no. 1, pp. 39–56, 2022.
W. Ahmed, Z. Li, H. Maqsood, and B. Anwar, “System modeling and controller design for lateral and longitudinal motion of F-16,” Autom. Control Intell. Syst., vol. 7, no. 1, pp. 39–45, 2019.
G. P. Dos Santos, A. Kossoski, J. M. Balthazar, and A. M. Tusset, “SDRE and LQR Controls Comparison Applied in High-Performance Aircraft in a Longitudinal Flight,” Int. J. Robot. Control Syst., vol. 1, no. 2, pp. 131–144, 2021.
S. Ijaz, C. Fuyang, M. Tariq, and H. Anwaar, “Adaptive integral-sliding-mode control strategy for maneuvering control of F16 aircraft subject to aerodynamic uncertainty,” Appl. Math. Comput., vol. 402, pp. 1–25, 2021, doi: 10.1016/j.amc.2021.126053.
J. Fisher and R. Bhattacharya, “Linear quadratic regulation of systems with stochastic parameter uncertainties,” Automatica, vol. 45, no. 12, pp. 2831–2841, 2009.
J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems,” IEEE Trans. Automat. Contr., vol. 66, no. 2, pp. 794–801, 2020.
Y. Yang, H. Xu, and X. Yao, “Disturbance rejection event-triggered robust model predictive control for tracking of constrained uncertain robotic manipulators,” IEEE Trans. Cybern., 2023.
O. Khan, G. Mustafa, A. Q. Khan, and M. Abid, “Robust observer-based model predictive control of non-uniformly sampled systems,” ISA Trans., vol. 98, pp. 37–46, 2020.
A. Kapnopoulos, C. Kazakidis, and A. Alexandridis, “Quadrotor trajectory tracking based on backstepping control and radial basis function neural networks,” Results Control Optim., vol. 14, p. 100335, 2024.
I. Lopez-Sanchez, R. Pérez-Alcocer, and J. Moreno-Valenzuela, “Trajectory tracking double two-loop adaptive neural network control for a Quadrotor,” J. Franklin Inst., vol. 360, no. 5, pp. 3770–3799, 2023.
L. Roveda and D. Piga, “Robust state dependent Riccati equation variable impedance control for robotic force-tracking tasks,” Int. J. Intell. Robot. Appl., vol. 4, pp. 507–519, 2020.
R. Bhattacharya, “Robust LQR design for systems with probabilistic uncertainty,” Int. J. Robust Nonlinear Control, vol. 29, no. 10, pp. 3217–3237, 2019.
M. F. von Andrian-Werburg, “Fast Stochastic Model Predictive Control Under Parametric Uncertainties,” Massachusetts Institute of Technology, Department of Chemical Engineering, 2020.
Y. Wan, D. E. Shen, S. Lucia, R. Findeisen, and R. D. Braatz, “Polynomial chaos-based H2 output-feedback control of systems with probabilistic parametric uncertainties,” Automatica, vol. 131, p. 109743, 2021.
A. Mesbah, I. V Kolmanovsky, and S. Di Cairano, “Stochastic model predictive control,” Handb. Model Predict. Control, pp. 75–97, 2019.
F. Petzke, A. Mesbah, and S. Streif, “Pocet: a polynomial chaos expansion toolbox for matlab,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 7256–7261, 2020.
T. L. M. Santos, V. M. Cunha, and A. Mesbah, “Stochastic model predictive control with adaptive chance constraints based on empirical cumulative distributions,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11257–11263, 2020.
L. Xia, S. Yuan, Z. Zou, and L. Zou, “Uncertainty quantification of hydrodynamic forces on the DTC model in shallow water waves using CFD and non-intrusive polynomial chaos method,” Ocean Eng., vol. 198, p. 106920, 2020.
S. Hijazi, G. Stabile, A. Mola, and G. Rozza, “Non-intrusive polynomial chaos method applied to full-order and reduced problems in computational fluid dynamics: A comparison and perspectives,” Quantif. Uncertain. Improv. Effic. Technol. QUIET Sel. Contrib., pp. 217–240, 2020.
N. El Moçayd and M. Seaid, “Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry,” Reliab. Eng. & Syst. Saf., vol. 216, p. 107923, 2021.
M. Lacour, G. Bal, and N. Abrahamson, “Dynamic stochastic finite element method using time-dependent generalized polynomial chaos,” Int. J. Numer. Anal. Methods Geomech., vol. 45, no. 3, pp. 293–306, 2021.
E. Voelsen, M. M. Dannert, A. A. Basmaji, F. Bensel, and U. Nackenhorst, “Sparse polynomial chaos expansion for nonlinear finite element simulations with random material properties,” PAMM, vol. 23, no. 1, p. e202200131, 2023.
L. Chen, J. Zhao, H. Li, Y. Huang, and X. Yuan, “A Polynomial Chaos Expansion Method for Mechanical Properties of Flexoelectric Materials Based on the Isogeometric Finite Element Method,” Sustainability, vol. 15, no. 4, p. 3417, 2023.
J.-J. Sinou and E. Denimal, “Reliable crack detection in a rotor system with uncertainties via advanced simulation models based on kriging and Polynomial Chaos Expansion,” Eur. J. Mech., vol. 92, p. 104451, 2022.
A. A. Basmaji, A. Fau, J. H. Urrea-Quintero, M. M. Dannert, E. Voelsen, and U. Nackenhorst, “Anisotropic multi-element polynomial chaos expansion for high-dimensional non-linear structural problems,” Probabilistic Eng. Mech., vol. 70, p. 103366, 2022.
P. S. Palar, L. R. Zuhal, and K. Shimoyama, “Global Sensitivity Analysis in Aerodynamic Design using Shapley Effects and Polynomial Chaos Regression,” IEEE Access, vol. 11, pp. 114825-114839, 2023.
Y. Li, H. Si, X. Wu, W. Zhao, G. Li, and J. Qiu, “Uncertainty quantification analysis with arbitrary polynomial chaos method: Application in slipstream effect of propeller aircraft,” Mod. Phys. Lett. B, p. 2350049, 2023.
Z. Wang, L. Wang, X. Wang, Q. Sun, and G. Yang, “Propagation algorithm for hybrid uncertainty parameters based on polynomial chaos expansion,” Int. J. Numer. Methods Eng., vol. 124, no. 19, pp. 4203–4223, 2023.
X. Zhu and B. Sudret, “Stochastic polynomial chaos expansions to emulate stochastic simulators,” Int. J. Uncertain. Quantif., vol. 13, no. 2, 2023.
M. M. Dannert, F. Bensel, A. Fau, R. M. N. Fleury, and U. Nackenhorst, “Investigations on the restrictions of stochastic collocation methods for high dimensional and nonlinear engineering applications,” Probabilistic Eng. Mech., vol. 69, p. 103299, 2022.
A. Chordia and J. N. Tripathi, “Uncertainty quantification of rf circuits using stochastic collocation techniques,” IEEE Electromagn. Compat. Mag., vol. 11, no. 1, pp. 45–56, 2022.
X. Sun, X. Pan, and J.-I. Choi, “Non-intrusive framework of reduced-order modeling based on proper orthogonal decomposition and polynomial chaos expansion,” J. Comput. Appl. Math., vol. 390, p. 113372, 2021.
J. Son and Y. Du, “Comparison of intrusive and nonintrusive polynomial chaos expansion-based approaches for high dimensional parametric uncertainty quantification and propagation,” Comput. & Chem. Eng., vol. 134, p. 106685, 2020.
B. Debusschere. Intrusive Polynomial Chaos Methods for Forward Uncertainty Propagation (No. SAND2015-9250B). Sandia National Lab.(SNL-CA), 2015.
D. Shen, H. Wu, B. Xia, and D. Gan, “Polynomial chaos expansion for parametric problems in engineering systems: A review,” IEEE Syst. J., vol. 14, no. 3, pp. 4500–4514, 2020.
M. Behtash and M. J. Alexander-Ramos, “A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion,” J. Mech. Des., vol. 144, no. 5, p. 51705, 2022.
Z. Ma, H. Schlüter, F. Berkel, T. Specker, and F. Allgöwer, “Recursive Feasibility and Stability for Stochastic MPC based on Polynomial Chaos,” IFAC-PapersOnLine, vol. 56, no. 1, pp. 204–209, 2023.
R. Ou, J. Schießl, M. H. Baumann, L. Grüne, and T. Faulwasser, “A Polynomial Chaos Approach to Stochastic LQ Optimal Control: Error Bounds and Infinite-Horizon Results,” arXiv Prepr. arXiv2311.17596, 2023.
L. Nechak, H.-F. Raynaud, and C. Kulcsár, “Stochastic linear quadratic control via random parameter-dependent truncated balanced realization,” Int. J. Robust Nonlinear Control, vol. 31, no. 4, pp. 1208–1226, 2021.
Y. Chen, Y. Song, L. Shi, and J. Gao, “Stochastic model predictive control for driver assistance control of intelligent vehicles considering uncertain driving environment,” J. Vib. Control, vol. 29, no. 3–4, pp. 758–771, 2023.
S. Mosharafian and J. M. Velni, “A hybrid stochastic model predictive design approach for cooperative adaptive cruise control in connected vehicle applications,” Control Eng. Pract., vol. 130, p. 105383, 2023.
R. D. McAllister and J. B. Rawlings, “On the inherent distributional robustness of stochastic and nominal model predictive control,” IEEE Trans. Automat. Contr., vol. 69, no. 2, pp. 741-754, 2023.
M. H. Baumann and L. Grüne, “Does the effort of Monte Carlo pay off? A case study on stochastic MPC,” IFAC-PapersOnLine, vol. 54, no. 6, pp. 70–75, 2021.
M. E. Sezgin, S. Pouraltafi-Kheljan, M. Beyarslan, and M. Göl, “Stochastic Model Predictive Control for Microgrids Based on Monte Carlo Simulations,” in 2022 57th International Universities Power Engineering Conference (UPEC), pp. 1–6, 2022.
J. A. Paulson and A. Mesbah, “An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 29, no. 15, pp. 5017–5037, 2019.
J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic model predictive control with joint chance constraints,” Int. J. Control, vol. 93, no. 1, pp. 126–139, 2020.
A. Pozzi and D. M. Raimondo, “Stochastic model predictive control for optimal charging of electric vehicles battery packs,” J. Energy Storage, vol. 55, p. 105332, 2022.
M. von Andrian and R. D. Braatz, “Fast stochastic model predictive control of unstable dynamical systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 7262–7267, 2020.
T. Asfihani, S. Subchan, D. M. Rosyid, and A. Sulisetyono, “Dubins Path Tracking Controller of USV using Model Predictive Control in Sea Field,” J. Eng. Appl. Sci., vol. 14, no. 20, pp. 7778–7787, 2019.
H. Purnawan, T. Asfihani, and S. Subchan, “Disturbance Observer Model Predictive Control with Application to UAV Pitch Angle Control,” AIP Conference Proceedings, vol. 2641, no. 1, 2021.
C. S. Agustina, T. Asfihani, R. R. Ginting, and S. Subchan, “Model predictive control in optimizing stock portfolio based on stock prediction data using Holt-Winter’s exponential smoothing,” in Journal of Physics: Conference Series, vol. 1821, no. 1, p. 12030, 2021.
N. Wiener, “The homogeneous chaos,” Am. J. Math., vol. 60, no. 4, pp. 897–936, 1938.
P. Bonnaire, P. Pettersson, and C. F. Silva, “Intrusive generalized polynomial chaos with asynchronous time integration for the solution of the unsteady Navier--Stokes equations,” Comput. & Fluids, vol. 223, p. 104952, 2021.
R. Zhang and H. Dai, “Independent component analysis-based arbitrary polynomial chaos method for stochastic analysis of structures under limited observations,” Mech. Syst. Signal Process., vol. 173, p. 109026, 2022.
C. Eckert, M. Beer, and P. D. Spanos, “A polynomial chaos method for arbitrary random inputs using B-splines,” Probabilistic Eng. Mech., vol. 60, p. 103051, 2020.
N. Lüthen, S. Marelli, and B. Sudret, “Sparse polynomial chaos expansions: Literature survey and benchmark,” SIAM/ASA J. Uncertain. Quantif., vol. 9, no. 2, pp. 593–649, 2021.
J. A. Paulson, A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Fast stochastic model predictive control of high-dimensional systems,” in 53rd IEEE Conference on decision and Control, pp. 2802–2809, 2014.
H. Purnawan, T. Asfihani, and S. Subchan, “Disturbance observer model predictive control with application to UAV pitch angle control,” in AIP Conference Proceedings, 2022, vol. 2641, no. 1, p. 30015.
P. Otta, O. Šantin, and V. Havlena, “On the quadratic programming solution for model predictive control with move blocking,” in 2021 23rd International Conference on Process Control (PC), pp. 49–54, 2021.
L. Wang, Z. Chen, and G. Yang, “A polynomial chaos expansion approach for nonlinear dynamic systems with interval uncertainty,” Nonlinear Dyn., vol. 101, no. 4, pp. 2489–2508, 2020.
DOI: https://doi.org/10.18196/jrc.v5i3.21366
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Heri Purnawan, Tahiyatul Asfihani, Seungkeun Kim, Subchan Subchan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com