Design and Simulation of an Analog Robust Control for a Realistic Buck Converter Model

Ibrahim Khalaf Mohammed, Laith Abduljabbar Khalaf

Abstract


The simplicity and cost of the control systems used in power converters are an urgent aspect. In this research, a simple and low cost voltage regulation system for a Buck converter system operating in uncertain conditions is provided. Using an electronic PID controller technique, the feedback control scheme of the presented Buck converter is carried out. Matlab software used a simulation environment for the proposed analog PID-based Buck converter scheme. The PID controller is easily implementable since it is built with basic and conventional electronic components like a resistor, capacitor and op-amp. The system simulation has high reliability as it is implemented using the Simscape package. The Simscape components used to build the converter system are modeled effectively taking into consideration including the practical factors such as internal resistance, tolerance and parasitic elements. This procedure certainly enhances the reliability of the simulation findings as the working conditions of the simulated system become more closer to the real-world conditions. Particle Swarm Optimization (PSO) is employed to properly optimize tune the PID gains. The regulation process of the PID control scheme is assessed under voltage and load disturbances in order to explore the robustness of the Buck converter performance. The findings from the system simulation, under the uncertainties, show largest rise time and settling time of 20 ms and 25 ms respectively, zero overshoot and minimum steady state error response, except at load disturbance case there is a fluctuation of 1 V. Consequently, It can be said that the proposed Buck converter based on analog PID controller can be used efficiently in the industrial and power applications.

Keywords


Proportional Integral Derivative; Buck converter; Optimization Algorithm; Particle Swarm Optimization; Voltage Regulation.

Full Text:

PDF

References


A. K. Gupta, D. Kumar, B. M. Reddy and P. Samuel, “BBBC based optimization of PI controller parameters for buck converter,” 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1-6, 2017, doi: 10.1109/IPACT.2017.8244983.

S. Kaitwanidvilai, P. Olranthichachat and M. Parnichkun, “Fixed structure robust loop shaping controller for a buck-boost converter using genetic algorithm,” Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2, pp. 24–28, 2008.

M. Harfman Todorovic, L. Palma and P. N. Enjeti, “Design of a Wide Input Range DC–DC Converter With a Robust Power Control Scheme Suitable for Fuel Cell Power Conversion,” in IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1247-1255, 2008, doi: 10.1109/TIE.2007.911200.

V. Viswanatha and R. Reddy, “Microcontroller based bidirectional buckboost converter for photo-voltaic power plant,” Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 745–758, 2018, doi: 10.1016/j.jesit.2017.04.002.

M. Kaouane, A. Boukhelifa and A. Cheriti, “Regulated output voltage double switch Buck-Boost converter for photovoltaic energy application,” 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp. 1-6, 2015, doi: 10.1109/IRSEC.2015.7455114.

K. Balamurugan, V. Nandalal, G. Suresh, B. M. Shankar and B. Srirevathi, “Comparative Analysis of CUK, SEPIC, Buck-Boost and ZETA Converters to Reduce Commutation Torque Ripple in BLDC Motor,” 2022 International Conference on Advanced Computing Technologies and Applications (ICACTA), pp. 1-7, 2022, doi: 10.1109/ICACTA54488.2022.9753362.

Z. Qian, O. Abdel-Rahman, H. Al-Atrash and I. Batarseh, “Modeling and Control of Three-Port DC/DC Converter Interface for Satellite Applications,” in IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 637-649, 2010, doi: 10.1109/TPEL.2009.2033926.

C. Zhang, J. Wang, S. Li, B. Wu and C. Qian, “Robust Control for PWMBased DC–DC Buck Power Converters With Uncertainty Via SampledData Output Feedback,” in IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 504-515, 2015, doi: 10.1109/TPEL.2014.2299759.

S. M. Ghamari, F. Khavari and H. Mollaee, “Adaptive back stepping controller design for DC/DC buck converter optimised by grey wolf algorithm,” IET Energy Systems Integrations, vol. 6, no. 1, pp. 18–30, 2023, doi: 10.1049/esi2.12098.

E. Meyer, Z. Zhang and Y. -F. Liu, “An Optimal Control Method for Buck ConvertersUsing a Practical Capacitor ChargeBalance Technique,” in IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1802-1812, 2008, doi: 10.1109/TPEL.2008.925201.

S. A. Lindiya, K. Vijayarekha and S. Palani, “Deterministic LQR controller for dc-dc Buck converter,” 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), pp. 1-6, 2016, doi: 10.1109/PESTSE.2016.7516450.

C. O. Moreira, F. A. Silva, S. F. Pinto and M. B. Santos, “Digital LQR control with Kalman Estimator for DC-DC Buck converter,” 2011 IEEE EUROCON - International Conference on Computer as a Tool, pp. 1-4, 2011, doi: 10.1109/EUROCON.2011.5929326.

Chin Chang, “Robust control of DC-DC converters: the buck converter,” Proceedings of PESC ’95 - Power Electronics Specialist Conference, vol. 2, pp. 1094-1097, 1995, doi: 10.1109/PESC.1995.474951.

M. Mazwin, H. Noor, C. Chanuri, F. Nur, I. Nurul and A. Mohd, “State feedback controller using pole placement method for linear buck converter to improve overshoot and settling time,” Applied Mechanics and Materials, vol. 793, pp. 211–215, 2015, doi: 10.4028/www.scientific.net/AMM.793.211.

S. K. Mazumder, A. H. Nayfeh and A. Borojevic, “Robust control of parallel DC-DC buck converters by combining integral-variablestructure and multiple-sliding-surface control schemes,” in IEEE Transactions on Power Electronics, vol. 17, no. 3, pp. 428-437, 2002, doi: 10.1109/TPEL.2002.1004251.

C. H. Rivetta, A. Emadi, G. A. Williamson, R. Jayabalan and B. Fahimi, “Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles,” in IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 559-572, 2006, doi: 10.1109/TIA.2005.863903.

S. Maity, “Dynamics and Stability Issues of a Discretized SlidingMode Controlled DC-DC Buck Converter Governed by Fixed-EventTime Switching,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 6, pp. 1657-1669, 2013, doi: 10.1109/TCSI.2012.2221193.

R. Ling, D. Maksimovic and R. Leyva, “Second-Order Sliding-Mode Controlled Synchronous Buck DC–DC Converter,” in IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2539-2549, 2016, doi: 10.1109/TPEL.2015.2431193.

S. -C. Tan, Y. M. Lai and C. K. Tse, “General Design Issues of Sliding-Mode Controllers in DC–DC Converters,” in IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1160-1174, 2008, doi: 10.1109/TIE.2007.909058.

J. S. Fang, S. -H. Tsai, J. -J. Yan, P. L. Chen and S. -M. Guo, “Realization of DC–DC Buck Converter Based on Hybrid H2 Model Following Control,” in IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1782-1790, 2022, doi: 10.1109/TIE.2021.3062268.

S. Kapat, P. S. Shenoy and P. T. Krein, “Near-Null Response to LargeSignal Transients in an Augmented Buck Converter: A Geometric Approach,” in IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3319-3329, 2012, doi: 10.1109/TPEL.2011.2181418.

S. Saadatmand, P. Shamsi and M. Ferdowsi, “The Voltage Regulation of a Buck Converter Using a Neural Network Predictive Controller,” 2020 IEEE Texas Power and Energy Conference (TPEC), pp. 1-6, 2020, doi: 10.1109/TPEC48276.2020.9042588.

G. Garcera, E. Figueres and A. Mocholi, “Novel three-controller average current mode control of DC-DC PWM converters with improved robustness and dynamic response,” in IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 516-528, 2000, doi: 10.1109/63.844512.

E. Figueres, G. Garcera, J. M. Benavent, M. Pascual and J. A. Martinez, “Adaptive two-loop Voltage-mode control of DC-DC switching converters,” in IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 239-253, 2006, doi: 10.1109/TIE.2005.862254.

U. Kaithamalai, L. Ponnusamy and B. Kandasamy, “Hybrid posicast controller for a DC-DC Buck converter,” Serbian Journal of Electrical Engineering, vol. 5, no. 1, pp. 121–138, 2008, doi: 10.2298/SJEE0801121K.

I. K. Mohammed, “Design of Optimized PID Controller Based on ABC Algorithm for Buck Converters with Uncertainties,” Journal of Engineering Science and Technology, vol. 16, no. 5, pp. 404-4059, 2021, doi: 10.5772/intechopen.94907.

M. N. Ahmed, I. K. Mohammed and A. T. Younis, “Design and Implementation of PSO/ABC Tunned PID Controller for Buck Converters,” Periodicals of Engineering and Natural Sciences (PEN), vol. 9, no. 4, pp. 643–656, 2021, doi: 10.21533/pen.v9i4.2411.

I. K. Mohammed, A. I. Abdulla and J. M. Ahmed, “Speed Control of DC Motor Using MRAC and Genetic Algorithm Based PID Controller,” International Journal of Industrial Electronics and Electrical Engineering, vol. 8, no. 1, pp. 1–6, 2020.

L. A. Khalaf. O. T. Mahmood A. M. T. Ibraheem, “Smart Speed Control of BLDC Motor Using Programmable Logic Controller,” Przeglad Elektrotechniczny, vol. 2023, no. 1, pp. 48–53, 2023, doi: 10.15199/48.2023.01.09.

S. Kapat and P. T. Krein, “Formulation of PID Control for DC–DC Converters Based on Capacitor Current: A Geometric Context,” in IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1424-1432, 2012, doi: 10.1109/TPEL.2011.2164423.

R. Priewasser, M. Agostinelli, C. Unterrieder, S. Marsili and M. Huemer, “Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation,” in IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 287-301, 2014, doi: 10.1109/TPEL.2013.2248751.

E. W. Zurita-Bustamante, J. Linares-Flores, E. Guzman-Ramirez and H. Sira-Ramirez, “A Comparison Between the GPI and PID Controllers for the Stabilization of a DC–DC “Buck” Converter: A Field Programmable Gate Array Implementation,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5251-5262, 2011, doi: 10.1109/TIE.2011.2123857.

Y. Lu, et al., “Design of PID Controller Based on ELM and Its Implementation for Buck Converters,” International Journal of Control, Automation and SystemsInternational Journal of Control, Automation and Systems, vol. 19, no. 1, pp. 2479–2490, 2021, doi: 10.1007/s12555-019-0989-1.

L. Guo, J. Y. Hung and R. M. Nelms, “Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters,” in IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237-2248, 2009, doi: 10.1109/TIE.2009.2016955.

N. J. Dahl, P. L. Muntal and M. A. E. Andersen, “Fully Time-Based PID Controller for a High Frequency Buck Converter,” 2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), pp. 1-5, 2023, doi: 10.1109/NEWCAS57931.2023.10198133.

A. I. Abdulla and I. K. Mohammed, “Aircraft pitch control design using LQG controller based on genetic algorithm,” Telecommunication Computing Electronics and Control, vol. 21, no. 2, pp. 401–417, 2023, doi: 10.12928/telkomnika.v21i2.22051.

A. Prodic and D. Maksimovic, “Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters,” 2002 IEEE Workshop on Computers in Power Electronics, pp. 18-22, 2002, doi: 10.1109/CIPE.2002.1196709.

A. Kelly and K. Rinne, “Control of dc-dc converters by direct pole placement and adaptive feedforward gain adjustment,” Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 3, pp. 1970-1975, 2005, doi: 10.1109/APEC.2005.1453326.

J. Shalini and N. S. Beniwal, “PID controller for DC-DC converter using Ziegler Nicholas method,” International Journal for Scientific Research and Development, vol. 3, no. 6, pp. 947–949, 2015.

A. Alnaib, N. Sultan and O. Mahmood, “Design a Fuel cell-based drive DC motor for an electric vehicle application,” International Journal of Engineering & Technology, vol. 7, no. 4, pp. 2081–2087, 2018, doi: 10.14419/ijet.v7i4.16308.

A. M. Alnaib, O. T. Mahmood and N. S. Sultan, “Design of genetic algorithm controller to fuel cell fed SEIG derived by DC motor,” International Journal of Engineering & Technology, vol. 7, no. 4, pp. 4141–4145, 2018.

C. H. Cheng, P. J. Cheng and M. J. Xie, “Current sharing of paralleled DC-DC converters using GA-based PID controllers,” Expert Systems with Applications, vol. 37, no. 1, pp. 733–740, 2010, doi: 10.1016/j.eswa.2009.05.083.

O. T. Altinoz and H. Erdem, “Evaluation function comparison of particle swarm optimization for buck converter,” SPEEDAM 2010, pp. 798-802, 2010, doi: 10.1109/SPEEDAM.2010.5542160.

O. T. Altinoz and H. Erdem, “Particle swarm optimisation-based PID controller tuning for static power converters,” International Journal of Power Electronics, vol. 7, no. 1, pp. 16–35, 2015, doi: 10.1504/IJPELEC.2015.071197.

A. Jalilvand, H. Vahedi and A. Bayat, “Optimal tuning of the PID controller for a buck converter using Bacterial Foraging Algorithm,” 2010 International Conference on Intelligent and Advanced Systems, pp. 1-5, 2010, doi: 10.1109/ICIAS.2010.5716105.

D. M. M. S. Regis, S. P. Kumar and G. G. Devadhas, “An optimum setting of controller for a dc-dc converter using bacterial intelligence technique,” ISGT2011-India, pp. 204-210, 2011, doi: 10.1109/ISETIndia.2011.6145383.

E. Isen, “Determination of Different Types of Controller Parameters Using Metaheuristic Optimization Algorithms for Buck Converter Systems,” in IEEE Access, vol. 10, pp. 127984-127995, 2022, doi: 10.1109/ACCESS.2022.3227347.

R. Liu, T. Wang, J. Zhou, X. Hao, Y. Xu and J. Qiu, “Improved African Vulture Optimization Algorithm Based on Quasi-Oppositional Differential Evolution Operator,” in IEEE Access, vol. 10, pp. 95197-95218, 2022, doi: 10.1109/ACCESS.2022.3203813.

S. -Y. Chen, B. -C. Yang, T. -A. Pu, C. -H. Chang and R. -C. Lin, “Active Current Sharing of a Parallel DC-DC Converters System Using Bat Algorithm Optimized Two-DOF PID Control,” in IEEE Access, vol. 7, pp. 84757-84769, 2019, doi: 10.1109/ACCESS.2019.2925064.

S. I. Saadi and I. K. Mohammed, “Power Control Approach for PV Panel System Based on PSO and INC Optimization Algorithms,” Journal Europeen des Systemes Automatises, vol. 55, no. 6, pp. 825–843, 2022, doi: 10.18280/jesa.550615.

I. K. Mohammed and M. N. Noman, “Optimal Control Approach for Robot System Using LQG Technique,” Journal Europeen des Systemes Automatises, vol. 55, no. 5, pp. 671–677, 2022, doi: 10.18280/jesa.550513.

A. Debnath, T. O. Olowu, S. Roy, I. Parvez and A. Sarwat, “Particle Swarm Optimization-based PID Controller Design for DC-DC Buck Converter,” 2021 North American Power Symposium (NAPS), pp. 1-6, 2021, doi: 10.1109/NAPS52732.2021.9654737.

M. Adeel, U. Fayyaz, U. Rafi and M. Umar Farooq, “Design of a Buck Converter with an Analogue PI Controller for Wide Load Range Applications,” 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1-5, 2023, doi: 10.1109/iCoMET57998.2023.10099295.

I. K. Mohammed, “Design and Simulation of Voltage Control System for Simscape Boost Converter Model With Disturbances,” International Journal of Control, Automation and Systems, vol. 22, no. 5, pp. 1707– 1716, 2024, doi: 10.1007/s12555-023-0311-0.

A. Elasser and D. A. Torrey, “Soft switching active snubbers for DC/DC converters,” Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC’95, vol. 1, pp. 483-489, 1995, doi: 10.1109/APEC.1995.468991.

B. A. Altug, A. Kababiyik, E. Dincol and C. Batunlu, “Buck Converter ˘ with Optocoupler Based Switching,” 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 184-190, 2021, doi: 10.1109/ICEEE52452.2021.9415957.

J. A. Solsona, S. G. Jorge and C. A. Busada, “Nonlinear Control of a Buck Converter Which Feeds a Constant Power Load,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7193-7201, 2015, doi: 10.1109/TPEL.2015.2392371.

M. Gheisarnejad, H. Farsizadeh and M. H. Khooban, “A Novel Nonlinear Deep Reinforcement Learning Controller for DC–DC Power Buck Converters,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6849-6858, 2021, doi: 10.1109/TIE.2020.3005071.

N. Swaminathan, L. N and Y. Cao, “DCM and CCM Operation of Buck-Boost Full-Bridge DC-DC Converter,” 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 292-297, 2021, doi: 10.1109/APEC42165.2021.9487340.

M. -L. Chiu, I. -F. Lo and T. -H. Lin, “A Time-Domain CCM/DCM Current-Mode Buck Converter with a PI Compensator Incorporating an Infinite Phase Shift Delay Line,” ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC), pp. 441-444, 2023, doi: 10.1109/ESSCIRC59616.2023.10268745.

P. Azer and A. Emadi, “Generalized State Space Average Model for Multi-Phase Interleaved Buck, Boost and Buck-Boost DC-DC Converters: Transient, Steady-State and Switching Dynamics,” in IEEE Access, vol. 8, pp. 77735-77745, 2020, doi: 10.1109/ACCESS.2020.2987277.

M. H. Rashid, Power Electronics Handbook: Devices, Circuits and Applications, Butterworth-heinemann, 2007.




DOI: https://doi.org/10.18196/jrc.v5i5.22408

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ibrahim Khalaf Mohammed, Laith Abduljabbar Khalaf

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik