Application of Sentiment Analysis as an Innovative Approach to Policy Making: A review
Abstract
Keywords
Full Text:
PDFReferences
M. M. Dakwah, A. A. Firdaus, Furizal, and R. A. Faresta, “Sentiment Analysis on Marketplace in Indonesia using Support Vector Machine and Naïve Bayes Method,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 10, no. 1, pp. 39–53, 2023, doi: 10.26555/jiteki.v10i1.28070.
J. R. Jim, M. A. R. Talukder, P. Malakar, M. M. Kabir, K. Nur, and M. F. Mridha, “Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review,” Nat. Lang. Process. J., vol. 6, p. 100059, 2024, doi: 10.1016/j.nlp.2024.100059.
L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 3, pp. 746–757, 2023, doi: 10.26555/jiteki.v9i3.26490.
Y. Pan, L. Hou, and X. Pan, “Interplay between stock trading volume, policy, and investor sentiment: A multifractal approach,” Phys. A Stat. Mech. its Appl., vol. 603, p. 127706, Oct. 2022.
F. Sufi and M. Alsulami, “Identifying drivers of COVID-19 vaccine sentiments for effective vaccination policy,” Heliyon, vol. 9, no. 9, p. e19195, Sep. 2023, doi: 10.1016/j.heliyon.2023.e19195.
J. Chi, “Explaining US travel behavior with perceived threat of pandemic, consumer sentiment, and economic policy uncertainty,” Transp. Policy, vol. 137, pp. 90–99, 2023.
S. Consoli, L. Barbaglia, and S. Manzan, “Fine-grained, aspect-based sentiment analysis on economic and financial lexicon,” Knowledge-Based Syst., vol. 247, p. 108781, Jul. 2022.
B. M. D. Abighail, Fachrifansyah, M. R. Firmanda, M. S. Anggreainy, Harvianto, and Gintoro, “Sentiment Analysis E-commerce Review,” Procedia Comput. Sci., vol. 227, pp. 1039–1045, 2023, doi: 10.1016/j.procs.2023.10.613.
U. Rhohmawati, I. Slamet, and H. Pratiwi, “Sentiment Analysis Using Maximum Entropy on Application Reviews (Study Case: Shopee on Google Play),” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 5, no. 1, pp. 44–49, 2019, doi: 10.26555/jiteki.v5i1.13087.
G. Fatouros, J. Soldatos, K. Kouroumali, G. Makridis, and D. Kyriazis, “Transforming sentiment analysis in the financial domain with ChatGPT,” Mach. Learn. with Appl., vol. 14, p. 100508, 2023, doi: 10.1016/j.mlwa.2023.100508.
J. Yang, “Financial stabilization policy, market sentiment, and stock market returns,” Financ. Res. Lett., vol. 52, p. 103379, Mar. 2023, doi: 10.1016/j.frl.2022.103379.
S. Liu and J. Liu, “Public attitudes toward COVID-19 vaccines on English-language Twitter: A sentiment analysis,” Vaccine, vol. 39, no. 39, pp. 5499–5505, 2021, doi: 10.1016/j.vaccine.2021.08.058.
J. Serrano-Guerrero, M. Bani-Doumi, F. P. Romero, and J. A. Olivas, “A 2-tuple fuzzy linguistic model for recommending health care services grounded on aspect-based sentiment analysis,” Expert Syst. Appl., vol. 238, 2024, doi: 10.1016/j.eswa.2023.122340.
K. Fuller, C. Lupton-Smith, R. Hubal, and J. E. McLaughlin, “Automated Analysis of Preceptor Comments: A Pilot Study Using Sentiment Analysis to Identify Potential Student Issues in Experiential Education,” Am. J. Pharm. Educ., vol. 87, no. 9, p. 100005, Sep. 2023, doi: 10.1016/j.ajpe.2023.02.005.
M. Gonzalez-Igual, T. Corzo Santamaria, and A. Rua Vieites, “Impact of education, age and gender on investor’s sentiment: A survey of practitioners,” Heliyon, vol. 7, no. 3, p. e06495, Mar. 2021, doi: 10.1016/j.heliyon.2021.e06495.
S. Huang and M. Zeng, "Political sentiment and MAX effect," The North American Journal of Economics and Finance, vol. 62, p. 101760, 2022.
D. O. Oyewola, L. A. Oladimeji, S. O. Julius, L. B. Kachalla, and E. G. Dada, “Optimizing sentiment analysis of Nigerian 2023 presidential election using two-stage residual long short term memory,” Heliyon, vol. 9, no. 4, 2023, doi: 10.1016/j.heliyon.2023.e14836.
A. A. Firdaus, A. Yudhana, I. Riadi, and Mahsun, “Indonesian presidential election sentiment: Dataset of response public before 2024,” Data Br., vol. 52, p. 109993, 2024, doi: 10.1016/j.dib.2023.109993.
X. Xing, H. Huang, and C. P. T. Hedenstierna, “Selling through online marketplaces with consumer profiling,” J. Bus. Res., vol. 164, p. 114022, Sep. 2023, doi: 10.1016/j.jbusres.2023.114022.
N. K. Nissa and E. Yulianti, “Multi-label text classification of Indonesian customer reviews using bidirectional encoder representations from transformers language model,” Int. J. Electr. Comput. Eng., vol. 13, no. 5, pp. 5641–5652, 2023, doi: 10.11591/ijece.v13i5.pp5641-5652.
K. S. Mohammed, H. Obeid, K. Oueslati, and O. Kaabia, “Investor sentiments, economic policy uncertainty, US interest rates, and financial assets: Examining their interdependence over time,” Financ. Res. Lett., vol. 57, p. 104180, Nov. 2023, doi: 10.1016/j.frl.2023.104180.
J. Xiao, J. Jiang, and Y. Zhang, “Policy uncertainty, investor sentiment, and good and bad volatilities in the stock market: Evidence from China,” Pacific-Basin Financ. J., vol. 84, p. 102303, Apr. 2024, doi: 10.1016/j.pacfin.2024.102303.
H. O. Ahmad and S. U. Umar, “Sentiment Analysis of Financial Textual data Using Machine Learning and Deep Learning Models,” Inform., vol. 47, no. 5, pp. 153–158, 2023, doi: 10.31449/inf.v47i5.4673.
A. Abayomi-Alli, O. Abayomi-Alli, S. Misra, and L. Fernandez-Sanz, “Study of the Yahoo-Yahoo Hash-Tag Tweets Using Sentiment Analysis and Opinion Mining Algorithms,” Inf., vol. 13, p. 152, 2022, doi: 10.3390/info13030152.
R. A. Arilya, Y. Azhar, and D. R. Chandranegara, “Sentiment Analysis on Work from Home Policy Using Naïve Bayes Method and Particle Swarm Optimization,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, pp. 433–440, 2021, doi: 10.26555/jiteki.v7i3.22080.
D. Jeong, S. Hwang, J. Kim, H. Yu, and E. Park, “Public perspective on renewable and other energy resources: Evidence from social media big data and sentiment analysis,” Energy Strateg. Rev., vol. 50, p. 101243, Nov. 2023, doi: 10.1016/j.esr.2023.101243.
J. Li and H.-J. Ahn, “Sensitivity of Chinese stock markets to individual investor sentiment: An analysis of Sina Weibo mood related to COVID-19,” J. Behav. Exp. Financ., vol. 41, p. 100860, Mar. 2024, doi: 10.1016/j.jbef.2023.100860.
Z. Hu and P.-W. Sun, “Salience theory, investor sentiment, and commonality in sentiment: Evidence from the Chinese stock market,” J. Behav. Exp. Financ., p. 100934, Apr. 2024, doi: 10.1016/j.jbef.2024.100934.
M. Lengkeek, F. van der Knaap, and F. Frasincar, “Leveraging hierarchical language models for aspect-based sentiment analysis on financial data,” Inf. Process. Manag., vol. 60, no. 5, 2023, doi: 10.1016/j.ipm.2023.103435.
K. Kirtac and G. Germano, “Sentiment trading with large language models,” Financ. Res. Lett., vol. 62, p. 105227, Apr. 2024, doi: 10.1016/j.frl.2024.105227.
A. A. A. Ahmed, S. Agarwal, Im. G. A. Kurniawan, S. P. D. Anantadjaya, and C. Krishnan, “Business boosting through sentiment analysis using Artificial Intelligence approach,” Int. J. Syst. Assur. Eng. Manag., vol. 13, pp. 699–709, Mar. 2022, doi: 10.1007/s13198-021-01594-x.
S. Peng et al., “A survey on deep learning for textual emotion analysis in social networks,” Digit. Commun. Networks, vol. 8, no. 5, pp. 745–762, 2022, doi: 10.1016/j.dcan.2021.10.003.
R. Sarkis-Onofre, F. Catalá-López, E. Aromataris, and C. Lockwood, “How to properly use the PRISMA Statement,” Syst. Rev., vol. 10, no. 1, p. 117, Dec. 2021, doi: 10.1186/s13643-021-01671-z.
R. K. Behera, M. Jena, S. K. Rath, and S. Misra, “Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data,” Inf. Process. Manag., vol. 58, no. 1, p. 102435, Jan. 2021, doi: 10.1016/j.ipm.2020.102435.
N. H. B. Suhendra, P. Keikhosrokiani, M. P. Asl, and X. Zhao, “Opinion mining and text analytics of literary reader responses: A case study of reader responses to KL Noir volumes in Goodreads using sentiment analysis and topic,” Handbook of research on opinion mining and text analytics on literary works and social media, pp. 191–239, 2022, doi: 10.4018/978-1-7998-9594-7.ch009.
S. Hosgurmath, V. Petli, and V. K. Jalihal, “An omicron variant tweeter sentiment analysis using NLP technique,” Glob. Transitions Proc., vol. 3, no. 1, pp. 215–219, 2022, doi: 10.1016/j.gltp.2022.03.025.
A. H. Pratama and M. Hayaty, “Performance of Lexical Resource and Manual Labeling on Long Short-Term Memory Model for Text Classification,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 1, pp. 74–84, 2023, doi: 10.26555/jiteki.v9i1.25375.
A. Zahri, R. Adam, and E. B. Setiawan, “Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU),” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 1, pp. 119–131, 2023, doi: 10.26555/jiteki.v9i1.25813.
M. S. Md Suhaimin, M. H. Ahmad Hijazi, E. G. Moung, P. N. E. Nohuddin, S. Chua, and F. Coenen, “Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 9, 2023, doi: 10.1016/j.jksuci.2023.101776.
N. M. Azahra and E. B. Setiawan, “Sentence-Level Granularity Oriented Sentiment Analysis of Social Media Using Long Short-Term Memory (LSTM) and IndoBERTweet Method,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 1, pp. 85–95, 2023, doi: 10.26555/jiteki.v9i1.25765.
Pristiyono, M. Ritonga, M. A. Al Ihsan, A. Anjar, and F. H. Rambe, “Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012045, 2021, doi: 10.1088/1757-899x/1088/1/012045.
A. Shukla, C. Bansal, S. Badhe, M. Ranjan, and R. Chandra, “An evaluation of Google Translate for Sanskrit to English translation via sentiment and semantic analysis,” Nat. Lang. Process. J., vol. 4, p. 100025, 2023, doi: 10.1016/j.nlp.2023.100025.
M. Chiny, M. Chihab, Y. Chihab, and O. Bencharef, “LSTM, VADER and TF-IDF based Hybrid Sentiment Analysis Model,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 7, pp. 265–275, 2021, doi: 10.14569/IJACSA.2021.0120730.
E. A. Metheney and E. Lust, “Zambian election panel survey: Dataset of responses before, near, and after 2021 elections,” Data Br., vol. 48, 2023, doi: 10.1016/j.dib.2023.109073.
G. Nguyen et al., “Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey,” Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124, 2019, doi: 10.1007/s10462-018-09679-z.
D. Suleiman, A. Odeh, and R. Al-Sayyed, “Arabic Sentiment Analysis Using Naïve Bayes and CNN-LSTM,” Inform., vol. 46, no. 6, pp. 79–86, 2022, doi: 10.31449/inf.v46i6.4199.
M. Subramanian, V. Easwaramoorthy Sathiskumar, G. Deepalakshmi, J. Cho, and G. Manikandan, “A survey on hate speech detection and sentiment analysis using machine learning and deep learning models,” Alexandria Eng. J., vol. 80, pp. 110–121, 2023, doi: 10.1016/j.aej.2023.08.038.
C. I. Eke, A. A. Norman, Liyana Shuib, and H. F. Nweke, “Sarcasm identification in textual data: systematic review, research challenges and open directions,” Artif. Intell. Rev., vol. 53, no. 6, pp. 4215–4258, Aug. 2020, doi: 10.1007/s10462-019-09791-8.
A. Kulkarni and A. Shivananda, Natural Language Processing Recipes. Berkeley, CA: Apress, 2019, doi: 10.1007/978-1-4842-4267-4.
N. Sultan, “Sentiment Analysis of Amazon Product Reviews using Supervised Machine Learning Techniques,” Knowl. Eng. Data, vol. 5, no. 1, pp. 101–108, 2022, doi: 10.1007/978-3-030-63319-6_68.
K. Trang and A. H. Nguyen, “A Comparative Study of Machine Learning-based Approach for Network Traffic Classification,” Knowl. Eng. Data Sci., vol. 4, no. 2, p. 128, 2022, doi: 10.17977/um018v4i22021p128-137.
H. Syahputra and A. Wibowo, “Comparison of Support Vector Machine ( SVM ) and Random Forest Algorithm for Detection of Negative Content on Websites,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 1, pp. 165–173, 2023, doi: 10.26555/jiteki.v9i1.25861.
Z. Fu, Y. C. Hsu, C. S. Chan, C. M. Lau, J. Liu, and P. S. F. Yip, “Efficacy of ChatGPT in Cantonese Sentiment Analysis: Comparative Study,” J. Med. Internet Res., vol. 26, p. e51069, 2024, doi: 10.2196/51069.
R. Sisodiya and P. K. Mannepalli, “A Survey on Social Digital Data-Based Sentiment Mining Techniques and Feature,” Int. J. Comput. Trends Technol., vol. 69, no. 4, pp. 34–38, Apr. 2021, doi: 10.14445/22312803/IJCTT-V69I4P107.
J. Abate and F. Rashid, “A review of sentiment analysis for Afaan Oromo: Current trends and future perspectives,” Nat. Lang. Process. J., vol. 6, p. 100051, 2024, doi: 10.1016/j.nlp.2023.100051.
M. S. Islam et al., “Machine Learning-Based Music Genre Classification with Pre-Processed Feature Analysis,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, p. 491, 2022, doi: 10.26555/jiteki.v7i3.22327.
P. K. Lim, I. Julca, and M. Mutwil, “Redesigning plant specialized metabolism with supervised machine learning using publicly available reactome data,” Comput. Struct. Biotechnol. J., vol. 21, pp. 1639–1650, 2023, doi: 10.1016/j.csbj.2023.01.013.
M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu, “Supervised Learning in Physical Networks: From Machine Learning to Learning Machines,” Phys. Rev. X, vol. 11, no. 2, pp. 1–18, 2021, doi: 10.1103/PhysRevX.11.021045.
H. Hassan et al., “Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review,” Comput. Methods Programs Biomed., vol. 218, 2022, doi: 10.1016/j.cmpb.2022.106731.
Koirunnisa, A. M. Siregar, and S. Faisal, “Optimized Machine Learning Performance with Feature Selection for Breast Cancer Disease Classification,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 4, pp. 1131–1143, 2023, doi: 10.26555/jiteki.v9i4.27527.
R. A. Asmara, N. D. Hendrawan, A. N. Handayani, and K. Arai, “Basketball Activity Recognition Using Supervised Machine Learning Implemented on Tizen OS Smartwatch,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 3, p. 447, 2022, doi: 10.26555/jiteki.v8i3.23668.
D. Petschke and T. E. M. Staab, “A supervised machine learning approach using naive Gaussian Bayes classification for shape-sensitive detector pulse discrimination in positron annihilation lifetime spectroscopy (PALS),” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 947, p. 162742, Dec. 2019, doi: 10.1016/j.nima.2019.162742.
Y. Zhao and J. Han, “Offline supervised learning v.s. online direct policy optimization: A comparative study and a unified training paradigm for neural network-based optimal feedback control,” Phys. D Nonlinear Phenom., vol. 462, p. 134130, Jun. 2024, doi: 10.1016/j.physd.2024.134130.
L. Chen, X. Jiang, and Y. Wang, “A Bayesian network learning method for sparse and unbalanced data with GNN-based multilabel classification application,” Appl. Soft Comput., vol. 154, 2024, doi: 10.1016/j.asoc.2024.111393.
S. Li, F. Liu, Z. Hao, L. Jiao, X. Liu, and Y. Guo, “MinEnt: Minimum entropy for self-supervised representation learning,” Pattern Recognit., vol. 138, p. 109364, Jun. 2023, doi: 10.1016/j.patcog.2023.109364.
J. L. Thenier-Villa, F. R. Martínez-Ricarte, M. Figueroa-Vezirian, and F. Arikan-Abelló, “Glioblastoma Pseudoprogression Discrimination Using Multiparametric Magnetic Resonance Imaging, Principal Component Analysis, and Supervised and Unsupervised Machine Learning,” World Neurosurg., vol. 183, pp. e953–e962, Mar. 2024, doi: 10.1016/j.wneu.2024.01.074.
M. H. Mobarak et al., “Scope of machine learning in materials research—A review,” Appl. Surf. Sci. Adv., vol. 18, 2023, doi: 10.1016/j.apsadv.2023.100523.
J. Zhao et al., “Battery safety : Machine learning-based prognostics,” Progress in Energy and Combustion Science, vol. 102, 2024.
O. Alqaryouti, N. Siyam, A. Abdel Monem, and K. Shaalan, “Aspect-based sentiment analysis using smart government review data,” Appl. Comput. Informatics, vol. 20, no. 1–2, pp. 142–161, 2024, doi: 10.1016/j.aci.2019.11.003.
H. Q. Low, P. Keikhosrokiani, and M. P. Asl, “Decoding violence against women: Analysing harassment in middle eastern literature with machine learning and sentiment analysis,” Humanit. Soc. Sci. Commun., vol. 11, no. 1, pp. 1-18, 2024, doi: 10.1057/s41599-024-02908-7.
S. Shaukat, M. Asad, and A. Akram, “Developing an Urdu Lemmatizer Using a Dictionary-Based Lookup Approach,” Appl. Sci., vol. 13, no. 8, 2023, doi: 10.3390/app13085103.
T. McEnery, “Review of Egbert, Biber & Gray (2022): Designing and Evaluating Language Corpora: A Practical Framework for Corpus Representativeness,” Int. J. Corpus Linguist., vol. 28, no. 4, pp. 586–591, Jul. 2023, doi: 10.1075/ijcl.00054.mce.
X. Tao and V. Aryadoust, “A Multidimensional Analysis of a High-Stakes English Listening Test: A Corpus-Based Approach,” Educ. Sci., vol. 14, no. 2, p. 137, Jan. 2024, doi: 10.3390/educsci14020137.
M. Usama, B. Ahmad, E. Song, M. S. Hossain, M. Alrashoud, and G. Muhammad, “Attention-based sentiment analysis using convolutional and recurrent neural network,” Futur. Gener. Comput. Syst., vol. 113, pp. 571–578, Dec. 2020, doi: 10.1016/j.future.2020.07.022.
M. Bouazizi and T. Ohtsuki, “Multi-class sentiment analysis on twitter: Classification performance and challenges,” Big Data Min. Anal., vol. 2, no. 3, pp. 181–194, Sep. 2019, doi: 10.26599/BDMA.2019.9020002.
H. Huang, A. A. Zavareh, and M. B. Mustafa, “Sentiment Analysis in E-Commerce Platforms: A Review of Current Techniques and Future Directions,” IEEE Access, vol. 11, pp. 90367–90382, 2023, doi: 10.1109/ACCESS.2023.3307308.
A. D. Cahyani, “Aspect-Based Sentiment Analysis from User-Generated Content in Shopee Marketplace Platform,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 2, pp. 444–454, 2023, doi: 10.26555/jiteki.v9i2.26367.
P. Hajek, L. Hikkerova, and J.-M. Sahut, “Fake review detection in e-Commerce platforms using aspect-based sentiment analysis,” J. Bus. Res., vol. 167, p. 114143, Nov. 2023, doi: 10.1016/j.jbusres.2023.114143.
A. J. Najafabadi, A. Skryzhadlovska, and O. F. Valilai, “Agile Product Development by Prediction of Consumers’ Behaviour; using Neurobehavioral and Social Media Sentiment Analysis Approaches,” Procedia Comput. Sci., vol. 232, no. 2023, pp. 1683–1693, 2024, doi: 10.1016/j.procs.2024.01.166.
A. L. Karn et al., Customer centric hybrid recommendation system for E-Commerce applications by integrating hybrid sentiment analysis, vol. 23, no. 1. Springer US, 2023, doi: 10.1007/s10660-022-09630-z.
A. El-Ansari and A. Beni-Hssane, “Sentiment Analysis for Personalized Chatbots in E-Commerce Applications,” Wirel. Pers. Commun., vol. 129, no. 3, pp. 1623–1644, Apr. 2023, doi: 10.1007/s11277-023-10199-5.
A. H. Khine, W. Wettayaprasit, and J. Duangsuwan, “A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification,” Artif. Intell. Med., vol. 148, p. 102758, Feb. 2024, doi: 10.1016/j.artmed.2023.102758.
K. K. Agustiningsih, E. Utami, and O. M. A. Alsyaibani, “Sentiment Analysis and Topic Modelling of The COVID-19 Vaccine in Indonesia on Twitter Social Media Using Word Embedding,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 1, p. 64, 2022, doi: 10.26555/jiteki.v8i1.23009.
T. Ahammad, “Identifying hidden patterns of fake COVID-19 news: An in-depth sentiment analysis and topic modeling approach,” Nat. Lang. Process. J., vol. 6, p. 100053, 2024, doi: 10.1016/j.nlp.2024.100053.
A. Çiçek Korkmaz, “Public’s perception on nursing education during the COVID-19 pandemic: SENTIMENT analysis of Twitter data,” Int. J. Disaster Risk Reduct., vol. 99, p. 104127, Dec. 2023, doi: 10.1016/j.ijdrr.2023.104127.
A. R. Pratama, “Sentiment Analysis of Facebook Posts through Special Reactions: The Case of Learning from Home in Indonesia Amid COVID-19,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 1, p. 83, 2022, doi: 10.26555/jiteki.v8i1.23615.
M. Ramzy and B. Ibrahim, “User satisfaction with Arabic COVID-19 apps: Sentiment analysis of users’ reviews using machine learning techniques,” Inf. Process. Manag., vol. 61, no. 3, p. 103644, May 2024, doi: 10.1016/j.ipm.2024.103644.
J. Zhou and J. Ye, “Sentiment analysis in education research: a review of journal publications,” Interact. Learn. Environ., vol. 31, no. 3, pp. 1252–1264, Apr. 2023, doi: 10.1080/10494820.2020.1826985.
M. Alassaf and A. M. Qamar, “Improving Sentiment Analysis of Arabic Tweets by One-way ANOVA,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2849–2859, 2022, doi: 10.1016/j.jksuci.2020.10.023.
P. SV and V. S, “Critique of the paper, ‘Public’s perception on nursing education during the COVID-19 Pandemic: Sentiment Analysis of Twitter Data,’” Int. J. Disaster Risk Reduct., vol. 101, p. 104232, Feb. 2024, doi: 10.1016/j.ijdrr.2023.104232.
T. Shaik, X. Tao, C. Dann, H. Xie, Y. Li, and L. Galligan, “Sentiment analysis and opinion mining on educational data: A survey,” Nat. Lang. Process. J., vol. 2, p. 100003, Mar. 2023, doi: 10.1016/j.nlp.2022.100003.
D. K. Dake and E. Gyimah, “Using sentiment analysis to evaluate qualitative students’ responses,” Educ. Inf. Technol., vol. 28, no. 4, pp. 4629–4647, 2023, doi: 10.1007/s10639-022-11349-1.
M. Usart, C. Grimalt-Álvaro, and A. M. Iglesias-Estradé, “Gender-sensitive sentiment analysis for estimating the emotional climate in online teacher education,” Learn. Environ. Res., vol. 26, no. 1, pp. 77–96, 2023, doi: 10.1007/s10984-022-09405-1.
Y. P. Mulyani et al., “Analyzing public discourse on photovoltaic (PV) adoption in Indonesia: A topic-based sentiment analysis of news articles and social media,” J. Clean. Prod., vol. 434, 2024, doi: 10.1016/j.jclepro.2023.140233.
S. Zhou et al., “Revealing Public Attitudes toward Mobile Cabin Hospitals during Covid-19 Pandemic: Sentiment and Topic Analyses Using Social Media Data in China,” Sustain. Cities Soc., p. 105440, Apr. 2024, doi: 10.1016/j.scs.2024.105440.
Z. Li and Z. Zou, “Punctuation and lexicon aid representation: A hybrid model for short text sentiment analysis on social media platform,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 3, p. 102010, 2024, doi: 10.1016/j.jksuci.2024.102010.
V. S. Anoop, C. Subin Krishna, and U. H. Govindarajan, “Graph embedding approaches for social media sentiment analysis with model explanation,” Int. J. Inf. Manag. Data Insights, vol. 4, no. 1, 2024, doi: 10.1016/j.jjimei.2024.100221.
M. Ashayeri and N. Abbasabadi, “Unraveling energy justice in NYC urban buildings through social media sentiment analysis and transformer deep learning,” Energy Build., vol. 306, p. 113914, Mar. 2024, doi: 10.1016/j.enbuild.2024.113914.
H. L. Nisa and A. Ahdika, “Hybrid Method for User Review Sentiment Categorization in ChatGPT Application Using N-Gram and Word2Vec Features,” Knowl. Eng. Data, vol. 7, no. 1, pp. 13–26, 2024.
M. Y. Chuttur and Y. Parianen, “A Comparison of Machine Learning Models to Prioritise Emails using Emotion Analysis for Customer Service Excellence,” Knowl. Eng. Data Sci., vol. 5, no. 1, p. 41, 2022, doi: 10.17977/um018v5i12022p41-52.
Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, and R. Sutoyo, “Sentiment analysis for customer review: Case study of Traveloka,” Procedia Comput. Sci., vol. 216, pp. 682–690, 2023, doi: 10.1016/j.procs.2022.12.184.
P. Savci and B. Das, “Prediction of the customers’ interests using sentiment analysis in e-commerce data for comparison of Arabic, English, and Turkish languages,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 3, pp. 227–237, 2023, doi: 10.1016/j.jksuci.2023.02.017.
N. Pleerux and A. Nardkulpat, “Sentiment analysis of restaurant customer satisfaction during COVID-19 pandemic in Pattaya, Thailand,” Heliyon, vol. 9, no. 11, 2023, doi: 10.1016/j.heliyon.2023.e22193.
A. Patel, P. Oza, and S. Agrawal, “Sentiment Analysis of Customer Feedback and Reviews for Airline Services using Language Representation Model,” Procedia Comput. Sci., vol. 218, pp. 2459–2467, 2023, doi: 10.1016/j.procs.2023.01.221
S. Jardim and C. Mora, “Customer reviews sentiment-based analysis and clustering for market-oriented tourism services and products development or positioning,” Procedia Comput. Sci., vol. 196, no. 2021, pp. 199–206, 2021, doi: 10.1016/j.procs.2021.12.006.
A. Karami and A. Elkouri, “Political Popularity Analysis in Social Media,” in Information in Contemporary Society, vol. 11420, pp. 456–465, 2019, doi: 10.1007/978-3-030-15742-5_44.
A. Sharma and U. Ghose, “Sentimental Analysis of Twitter Data with respect to General Elections in India,” Procedia Comput. Sci., vol. 173, pp. 325–334, 2020, doi: 10.1016/j.procs.2020.06.038.
D. Antypas, A. Preece, and J. Camacho-Collados, “Negativity spreads faster: A large-scale multilingual twitter analysis on the role of sentiment in political communication,” Online Soc. Networks Media, vol. 33, 2023, doi: 10.1016/j.osnem.2023.100242.
A. Karami et al., “2020 U.S. presidential election in swing states: Gender differences in Twitter conversations,” Int. J. Inf. Manag. Data Insights, vol. 2, p. 100097, 2022, doi: 10.1016/j.jjimei.2022.100097.
M. M. Skoric, J. Liu, and K. Jaidka, “Electoral and public opinion forecasts with social media data: A meta-analysis,” Inf., vol. 11, no. 4, pp. 1–17, 2020, doi: 10.3390/info11040187.
K. Brito and P. J. L. Adeodato, “Machine learning for predicting elections in Latin America based on social media engagement and polls,” Gov. Inf. Q., vol. 40, no. 1, p. 101782, Jan. 2023, doi: 10.1016/j.giq.2022.101782.
O. Alsemaree, A. S. Alam, S. Gill, and S. Uhlig, “Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions,” Heliyon, p. e27863, Mar. 2024, doi: 10.1016/j.heliyon.2024.e27863.
P. Y. Win Myint, S. L. Lo, and Y. Zhang, “Unveiling the dynamics of crisis events: Sentiment and emotion analysis via multi-task learning with attention mechanism and subject-based intent prediction,” Inf. Process. Manag., vol. 61, no. 4, 2024, doi: 10.1016/j.ipm.2024.103695.
N. Das, B. Sadhukhan, R. Chatterjee, and S. Chakrabarti, “Integrating sentiment analysis with graph neural networks for enhanced stock prediction: A comprehensive survey,” Decis. Anal. J., vol. 10, 2024, doi: 10.1016/j.dajour.2024.100417.
M. Li and Y. Shi, “Sentiment analysis and prediction model based on Chinese government affairs microblogs,” Heliyon, vol. 9, no. 8, 2023, doi: 10.1016/j.heliyon.2023.e19091.
C. Haas, C. Budin, and A. d’Arcy, “The Effect of Performance Metrics and Sentiment Scores on Selecting Oil Price Prediction Models,” SSRN Electron. J., vol. 133, 2022, doi: 10.2139/ssrn.4252441.
P. Mukherjee, Y. Badr, S. Doppalapudi, S. M. Srinivasan, R. S. Sangwan, and R. Sharma, “Effect of Negation in Sentences on Sentiment Analysis and Polarity Detection,” Procedia Comput. Sci., vol. 185, pp. 370–379, 2021, doi: 10.1016/j.procs.2021.05.038.
P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment Analysis Using Word2vec and Long Short-Term Memory (LSTM) for Indonesian Hotel Reviews,” Procedia Comput. Sci., vol. 179, pp. 728–735, 2021, doi: 10.1016/j.procs.2021.01.061.
H. Y. Lin and T. S. Moh, “Sentiment analysis on COVID tweets using COVID-Twitter-BERT with auxiliary sentence approach,” Proc. 2021 ACMSE Conf. - ACMSE 2021 Annu. ACM Southeast Conf., pp. 234–238, 2021, doi: 10.1145/3409334.3452074.
P. Shah, P. Swaminarayan, and M. Patel, “Sentiment analysis on film review in Gujarati language using machine learning,” International Journal of Electrical and Computer Engineering, vol. 12, no. 1, pp. 1030–1039, 2022. doi: 10.11591/ijece.v12i1.pp1030-1039.
C. Ahmed, A. ElKorany, and E. ElSayed, “Prediction of customer’s perception in social networks by integrating sentiment analysis and machine learning,” J. Intell. Inf. Syst., vol. 60, no. 3, pp. 829–851, 2023, doi: 10.1007/s10844-022-00756-y.
M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset,” Expert Syst. Appl., vol. 212, p. 118715, Feb. 2023, doi: 10.1016/j.eswa.2022.118715.
A. Vohra and R. Garg, “Deep learning based sentiment analysis of public perception of working from home through tweets,” J. Intell. Inf. Syst., vol. 60, no. 1, pp. 255–274, 2023, doi: 10.1007/s10844-022-00736-2.
K. Hayawi, S. Shahriar, M. A. Serhani, I. Taleb, and S. S. Mathew, “ANTi-Vax: a novel Twitter dataset for COVID-19 vaccine misinformation detection,” Public Health, vol. 203, pp. 23–30, 2022, doi: 10.1016/j.puhe.2021.11.022.
T. Wegderes, M. Million, H. Ashebir, and L. Kedir, “Sentiment Mining and Aspect Based Summarization of Opinionated Afaan Sentiment Mining and Aspect Based Summarization of Opinionated Afaan Oromoo News Text,” vol. 9, pp. 66–72, 2022, doi: 10.11648/j.ajesa.20220902.12.
D. Anusic and A. Hussain, “Listen to the noise Demonstrating an end to end multi-platform and multilingual sentiment analysis approach,” Procedia Comput. Sci., vol. 219, pp. 546–553, 2023, doi: 10.1016/j.procs.2023.01.323.
K. Sarkar, “Sentiment polarity detection in Bengali tweets using LSTM recurrent neural networks,” 2019 2nd Int. Conf. Adv. Comput. Commun. Paradig. ICACCP 2019, vol. 28, no. 3, pp. 377–386, 2019, doi: 10.1109/ICACCP.2019.8883010.
K. R. Mabokela, T. Celik, and M. Raborife, “Multilingual Sentiment Analysis for Under-Resourced Languages: A Systematic Review of the Landscape,” IEEE Access, vol. 11, pp. 15996–16020, 2023, doi: 10.1109/ACCESS.2022.3224136.
R. K. Das, M. Islam, M. M. Hasan, S. Razia, M. Hassan, and S. A. Khushbu, “Sentiment analysis in multilingual context: Comparative analysis of machine learning and hybrid deep learning models,” Heliyon, vol. 9, no. 9, pp. 1–20, 2023, doi: 10.1016/j.heliyon.2023.e20281.
E. Zuo, H. Zhao, B. Chen, and Q. Chen, “Context-Specific Heterogeneous Graph Convolutional Network for Implicit Sentiment Analysis,” IEEE Access, vol. 8, pp. 37967–37975, 2020, doi: 10.1109/ACCESS.2020.2975244.
S. Kaddoura and R. Nassar, “EnhancedBERT: A feature-rich ensemble model for Arabic word sense disambiguation with statistical analysis and optimized data collection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 1, 2024, doi: 10.1016/j.jksuci.2023.101911.
H. Grissette and E. H. Nfaoui, “Semisupervised neural biomedical sense disambiguation approach for aspect-based sentiment analysis on social networks,” J. Biomed. Inform., vol. 135, 2022, doi: 10.1016/j.jbi.2022.104229.
A. Shaik, N. Tondehal, and V. Lavudya, “A study on problematic Internet use associated with social anxiety among medical students.,” Int. J. Surg. Med., vol. 9, p. 1, 2023, doi: 10.5455/ijsm.136-1662136136.
Q. A. Xu, C. Jayne, and V. Chang, “An emoji feature-incorporated multi-view deep learning for explainable sentiment classification of social media reviews,” Technol. Forecast. Soc. Change, vol. 202, 2024, doi: 10.1016/j.techfore.2024.123326.
G. Caldarelli, R. De Nicola, F. Del Vigna, M. Petrocchi, and F. Saracco, “The role of bot squads in the political propaganda on Twitter,” Commun. Phys., vol. 3, no. 1, 2020, doi: 10.1038/s42005-020-0340-4.
R. P. Pratama and A. Tjahyanto, “The influence of fake accounts on sentiment analysis related to COVID-19 in Indonesia,” Procedia Comput. Sci., vol. 197, pp. 143–150, 2021, doi: 10.1016/j.procs.2021.12.128.
J. Pastor-Galindo et al., “Spotting Political Social Bots in Twitter: A Use Case of the 2019 Spanish General Election,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2156–2170, Dec. 2020, doi: 10.1109/TNSM.2020.3031573.
R. Schuchard, A. T. Crooks, A. Stefanidis, and A. Croitoru, “Bot stamina: examining the influence and staying power of bots in online social networks,” Appl. Netw. Sci., vol. 4, no. 1, 2019, doi: 10.1007/s41109-019-0164-x.
R. J. Schuchard and A. T. Crooks, “Insights into elections: An ensemble bot detection coverage framework applied to the 2018 U.S. midterm elections,” PLoS One, vol. 16, no. 1, p. e0244309, Jan. 2021, doi: 10.1371/journal.pone.0244309.
Y. Gorodnichenko, T. Pham, and O. Talavera, “Social media, sentiment and public opinions: Evidence from #Brexit and #USElection,” Eur. Econ. Rev., vol. 136, p. 103772, Jul. 2021, doi: 10.1016/j.euroecorev.2021.103772.
DOI: https://doi.org/10.18196/jrc.v5i6.22573
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Asno Azzawagama Firdaus, Joko Slamet Saputro, Miftahul Anwar, Feri Adriyanto, Hari Maghfiroh, Alfian Ma’arif, Fahmi Syuhada, Rahmad Hidayat
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com