Computational Approaches to Two-Energy Group Neutron Diffusion in Cylindrical Reactors
Abstract
This study addresses the critical need for accurate neutron diffusion modeling in cylindrical reactors, focusing on the two-energy groups neutron diffusion system. Such modeling is essential for optimizing reactor design and safety in nuclear engineering. The research primarily aims to enhance computational methods by transitioning from a traditional integer-order model to a more sophisticated fractional-order model, which can capture complex physical phenomena with greater precision. The study employs the Laplace Transform Method (LTM) to first solve the integer-order system and then extends this approach to a fractional-order system using the Caputo derivative, a method well-suited for systems with memory effects. To efficiently solve the resulting fractional-order model, we introduce the Modified Fractional Euler Method (MFEM), designed to improve numerical accuracy and stability. The effectiveness of this approach is demonstrated through specific numerical applications, such as simulating neutron flux distributions, which validate the model’s accuracy and its potential impact on advancing reactor physics. These applications showcase the practical relevance of the proposed methods and their contribution to improving nuclear reactor simulations.
Keywords
Full Text:
PDFReferences
A. Burqan, M. Shqair, A. El-Ajou, S. M. E. Ismaeel, and Z. AlZhour, “Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method,” AIMS Mathematics, vol. 8, no. 8, pp. 19297-19312, 2023, doi: 10.3934/math.2023984.
K. Khasawneh, S. Dababneh, and Z. Odibat, “A solution of the neutron diffusion equation in hemispherical symmetry using the homotopy perturbation method,” Annals of Nuclear Energy, vol. 36, pp. 1711-1717, 2009, doi: 10.1016/j.anucene.2009.09.001.
A. Nahla, F. Al-Malki, and M. Rokaya, “Numerical techniques for the neutron diffusion equations in the nuclear reactors,” Advanced Studies in Theoretical Physics, vol. 6, pp. 649-664, 2012.
S. M. Khaled, “Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry,” AIMS Mathematics, vol. 7, pp. 12364-12373, 2022, doi: 10.3934/math.2022686.
S. Dababneh, K. Khasawneh, and Z. Odibat, “An alternative solution of the neutron diffusion equation in cylindrical symmetry,” Annals of Nuclear Energy, vol. 38, no. 5, pp. 1140–1143, 2011, doi: 10.1016/j.anucene.2010.12.011.
S. Dababneh, K. Khasawneh, and Z. Odibat, “Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method,” AIMS Mathematics, vol. 8, no. 8, pp. 19297–19312, 2023, doi: 10.3934/math.2023984.
S. M. Khaled, “Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry,” AIMS Mathematics, vol. 7, no. 7, pp. 12364-12373, 2022, doi: 10.3934/math.2022686.
J. S. Cassell and M. M. R. Williams, “A solution of the neutron diffusion equation for a hemisphere with mixed boundary conditions,” Annals of Nuclear Energy, vol. 31, no. 17, pp. 1987–2004, 2004, doi: 10.1016/j.anucene.2004.04.008.
I. M. Batiha, N. Allouch, I. H. Jebril, and S. Momani, “A robust scheme for reduction of higher fractional-order systems,” Journal of Engineering Mathematics, vol. 144, no. 4, 2024, doi: 10.1007/s10665-023-10310-6.
M. Shqair, A. El-Ajou, and M. Nairat, “Analytical solution for multienergy groups of neutron diffusion equations by a residual power series method,” Mathematics, vol. 7, no. 7, 2019, doi: 10.3390/math7070633.
H. Satti and O. El Hajjaji, “Empowering nuclear reactor analysis: OpenNode for accurate 3D core simulation through nodal expansion neutron diffusion equations solving,” Radiation Physics and Chemistry, vol. 215, 2024, doi: 10.1016/j.radphyschem.2023.111341.
J. Alnaqbi, D. Hartanto, R. Alnuaimi, M. Imron, and V. Gillette, “Static and transient analyses of advanced power reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO,” Nuclear Engineering and Technology, vol. 54, no. 2, pp. 764-769, 2022, doi: 10.1016/j.net.2021.08.012.
T. Singh, T. Mazumdar, and P. Pandey, “A 3-D multi group diffusion theory code based on nodal expansion method for square geometry,” Annals of Nuclear Energy, vol. 64, pp. 230-243, 2014, doi: 10.1016/j.anucene.2013.09.041.
D. Wang, F. Li, J. Guo, J. Wei, J. Zhang, and C. Hao, “Improved nodal expansion method for solving neutron diffusion equation in cylindrical geometry,” Nuclear Engineering and Design, vol. 240, pp. 1997-2004, 2010.
M. Shqair, E. A. Farrag, and M. Al-Smadi, “Solving multi-group reflected spherical reactor system of equations using the homotopy perturbation method,” Mathematics, vol. 10, 2022, doi: 10.3390/math10101784.
M. Shqair, “Developing a new approaching technique of homotopy perturbation method to solve two–group reflected cylindrical reactor,” Results in Physics, vol. 12, pp. 1880-1887, 2019, doi: 10.1016/j.rinp.2019.01.063.
M. Shqair, I. Ghabar, and A. Burqan, “Using Laplace residual power series method in solving coupled fractional neutron diffusion equations with delayed neutrons system,” Fractal and Fractional, vol. 7, no. 3, 2023, doi: 10.3390/fractalfract7030219.
A. Aboanber, A. Nahla, and S. Aljawazneh, “Fractional two energy groups matrix representation for nuclear reactor dynamics with an external source,” Annals of Nuclear Energy, vol. 153, 2021, doi: 10.1016/j.anucene.2020.108062.
T. Sardar, S. Ray, and R. Bera, “The solution of coupled fractional neutron diffusion equations with delayed neutrons,” International Journal of Nuclear Energy Science and Technology, vol. 5, no. 2, pp. 105-133, 2010, doi: 10.1504/IJNEST.2010.030552.
I. M. Batiha, S. Alshorm, A. Al-Husban, R. Saadeh, G. Gharib, and S. Momani, “The n-point composite fractional formula for approximating Riemann–Liouville integrator,” Symmetry, vol. 15, no. 4, 2023, doi: 10.3390/sym15040938.
M. Nairat, M. Shqair, and T. Alhalholy, “Cylindrically symmetric fractional Helmholtz equation,” Applied Mathematics E-Notes, vol. 19, pp. 708-717, 2019.
A. Aloudat, F. S. Al-Sha’ar, H. Al-Qawaqneh and A. Dababneh, “The Bernstein Expansion for Rational Differentiable Functions in Newton Divided Differences Form,” 2023 International Conference on Information Technology (ICIT), pp. 719-723, 2023, doi: 10.1109/ICIT58056.2023.10226097.
T. Hamadneh, A. Hioual, R. Saadeh, M. A. Abdoon, D. K. Almutairi, T. A. Khalid, and A. Ouannas, “General methods to synchronize fractional discrete reaction–diffusion systems applied to the glycolysis model,” Fractal and Fractional, vol. 7, no. 11, 2023, doi: 10.3390/fractalfract7110828.
I. M. Batiha, O. Talafha, O. Y. Ababneh, S. Alshorm, and S. Momani, “Handling a commensurate, incommensurate, and singular fractionalorder linear time-invariant system,” Axioms, vol. 12, no. 8, 2023, doi: 10.3390/axioms12080771.
N. R. Anakira, O. Ababneh, A. S. Heilat, and I. Batiha, “A new accurate approximate solution of singular two-point boundary value problems,” General Letters in Mathematics, vol. 12, no. 1, pp. 31–39, 2022, doi: 10.31559/glm2022.12.1.4.
R. B. Albadarneh, A. K. Alomari, N. Tahat, and I. M. Batiha, “Analytic solution of nonlinear singular BVP with multi-order fractional derivatives in electrohydrodynamic flows,” Turkish World Mathematical Society Journal of Applied and Engineering Mathematics, vol. 11, pp. 1125–1137, 2021.
I. M. Batiha, R. El-Khazali, A. AlSaedi, and S. Momani, “The general solution of singular fractional-order linear time-invariant continuous systems with regular pencils,” Entropy, vol. 20, no. 6, 2018, doi: 10.3390/e20060400.
I. M. Batiha, N. Barrouk, A. Ouannas, and A. Farah, “A study on invariant regions, existence and uniqueness of the global solution for tridiagonal reaction-diffusion systems,” Journal of Applied Mathematics and Informatics, vol. 41, no. 4, pp. 893–906, 2023, doi: 10.14317/jami.2023.893.
I. Batiha, A. Ouannas, and J. Emwas, “A stabilization approach for a novel chaotic fractional-order discrete neural network,” Journal of Mathematical and Computational Science, vol. 11, pp. 5514–5524, 2021.
Z. Chebana, T. E. Oussaeif, S. Dehilis, A. Ouannas, and I. M. Batiha, “On nonlinear Neumann integral condition for a semilinear heat problem with blowup simulation,” Palestine Journal of Mathematics, vol. 12, no. 3, pp. 378–394, 2023.
R. B. Albadarneh, A. Abbes, A. Ouannas, I. M. Batiha, and T. E. Oussaeif, “On chaos in the fractional-order discrete-time macroeconomic systems,” AIP Conference Proceedings, vol. 2849, no. 1, 2023, doi: 10.1063/5.0162686.
I. M. Batiha, N. Djenina, and A. Ouannas, “A stabilization of linear incommensurate fractional-order difference systems,” AIP Conference Proceedings, vol. 2849, no. 1, 2023, doi: 10.1063/5.0164866.
N. Abdelhalim, A. Ouannas, I. Rezzoug, and I. M. Batiha, “A study of a high–order time–fractional partial differential equation with purely integral boundary conditions,” Fractional Differential Calculus, vol. 13, no. 2, pp. 199—210, 2023, doi: 10.7153/fdc-2023-13-13.
A. A. Khennaoui, et al., “An unprecedented 2-dimensional discrete-time fractional-order system and its hidden chaotic attractors,” Mathematical Problems in Engineering, vol. 2021, 2021, doi: 10.1155/2021/6768215.
I. M. Batiha, A. Benguesmia, T. E. Oussaeif, I. H. Jebril, A. Ouannas, and S. Momani, “Study of a superlinear problem for a time fractional parabolic equation under integral over-determination condition,” IAENG International Journal of Applied Mathematics, vol. 54, pp. 187–193, 2024.
A. Bouchenak, I. M. Batiha, M. Aljazzazi, I. H. Jebril, M. Al-Horani, and R. Khalil, “Atomic exact solution for some fractional partial differential equations in Banach spaces,” Partial Differential Equations in Applied Mathematics, vol. 9, 2024, doi: 10.1016/j.padiff.2024.100626.
I. M. Batiha, I. H. Jebril, A. A. Al-Nana, and S. Alshorm, “A simple harmonic quantum oscillator: fractionalization and solution,” Mathematical Models in Engineering, vol. 10, pp. 1-8, 2024.
I. M. Batiha, J. Oudetallah, A. Ouannas, A. A. Al-Nana, and I. H. Jebril, “Tuning the fractional-order PID-controller for blood glucose level of diabetic patients,” International Journal of Advances in Soft Computing and its Applications, vol. 13, no. 2, pp. 1–10, 2021.
I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, and S. Momani, “Design fractional-order PID controllers for singlejoint robot arm model,” International Journal of Advances in Soft Computing and its Applications, vol. 14, no. 2, pp. 96–114, 2022, doi: 10.15849/IJASCA.220720.07.
M. Afkar, R. Gavagsaz-Ghoachani, M. Phattanasak, S. Pierfederici, and W. Saksiri, “Local-stability analysis of cascaded control for a switching power converter,” Journal of Robotics and Control, vol. 5, no. 1, pp. 160–172, 2024, doi: 10.18196/jrc.v5i1.20302. [
O. Y. Ismael, M. Almaged, and A. I. Abdulla, “Nonlinear model predictive control-based collision avoidance for mobile robot,” Journal of Robotics and Control, vol. 5, no. 1, pp. 142–151, 2024, doi: 10.18196/jrc.v5i1.20615.
H. Yadavari, V. T. Aghaei, and S. ˙Ikizoglu, “Addressing challenges in ˇ dynamic modeling of stewart platform using reinforcement learning-based control approach,” Journal of Robotics and Control, vol. 5, no. 1, pp. 117–131, 2024, doi: 10.18196/jrc.v5i1.20582.
P. Chotikunnan, R. Chotikunnan, and P. Minyong, “Adaptive parallel iterative learning control with a time-varying sign gain approach empowered by expert system,” Journal of Robotics and Control, vol. 5, no. 1, pp. 72–81, 2024, doi: 10.18196/jrc.v5i1.20890.
I. M. Batiha, Z. Chebana, T. E. Oussaeif, A. Ouannas, and I. H. Jebril, “On a weak Solution of a fractional-order temporal equation,” Mathematics and Statistics, vol. 10, no. 5, pp. 1116–1120, 2022, doi: 10.13189/ms.2022.100522.
N. Anakira, Z. Chebana, T. E. Oussaeif, I. M. Batiha, and A. Ouannas, “A study of a weak solution of a diffusion problem for a temporal fractional differential equation,” Nonlinear Functional Analysis and Applications, vol. 27, no. 3, pp. 679–689, 2022, doi: 10.22771/nfaa.2022.27.03.14.
I. M. Batiha, I. Rezzoug, T. E. Oussaeif, A. Ouannas, and I. H. Jebril, “Pollution detection for the singular linear parabolic equation,” Journal of Applied Mathematics and Informatics, vol. 41, no. 3, pp. 647–656, 2023, doi: 10.14317/jami.2023.647.
Z. Chebana, T. E. Oussaeif, A. Ouannas, and I. M. Batiha, “Solvability of Dirichlet problem for a fractional partial differential equation by using energy inequality and Faedo-Galerkin method,” Innovative Journal of Mathematics, vol. 1, no. 1, pp. 34–44, 2022, doi: 10.55059/ijm.2022.1.1/4.
I. M. Batiha, “Solvability of the solution of superlinear hyperbolic Dirichlet problem,” International Journal of Analysis and Applications, vol. 20, 2022, doi: 10.28924/2291-8639-20-2022-62.
I. M. Batiha, Z. Chebana, T. E. Oussaeif, A. Ouannas, S. Alshorm, and A. Zraiqat, “Solvability and dynamics of superlinear reaction diffusion problem with integral condition,” IAENG International Journal of Applied Mathematics, vol. 53, pp. 113–121, 2023.
I. M. Batiha, Z. Chebana, T. E. Oussaeif, A. Ouannas, I. H. Jebril, and M. Shatnawi, “Solvability of nonlinear wave equation with nonlinear integral Neumann conditions,” International Journal of Analysis and Applications, vol. 21, 2023, doi: 10.28924/2291-8639-21-2023-34.
I. M. Batiha, A. Ouannas, R. Albadarneh, A. A. Al-Nana, and S. Momani, “Existence and uniqueness of solutions for generalized Sturm–Liouville and Langevin equations via Caputo–Hadamard fractional-order operator,” Engineering Computations, vol. 39, no. 7, pp. 2581–2603, 2022, doi: 10.1108/EC-07-2021-0393.
T. E. Oussaeif, B. Antara, A. Ouannas, I. M. Batiha, K. M. Saad, H. Jahanshahi, A. M. Aljuaid, and A. A. Aly, “Existence and uniqueness of the solution for an inverse problem of a fractional diffusion equation with integral condition,” Journal of Function Spaces, vol. 2022, 2022, doi: 10.1155/2022/7667370.
I. M. Batiha, N. Barrouk, A. Ouannas, and W. G. Alshanti, “On global existence of the fractional reaction-diffusion system’s solution,” International Journal of Analysis and Applications, vol. 21, 2023, doi: 10.28924/2291-8639-21-2023-11. [
I. M. Batiha, A. Bataiha, A. Al-Nana, S. Alshorm, I. H. Jebril, and A. Zraiqat, “A numerical scheme for dealing with fractional initial value problem,” International Journal of Innovative Computing, Information and Control, vol. 19, no. 3, pp. 763-774, 2023.
R. B. Albadarneh, I. Batiha, A. K. Alomari, and N. Tahat, “Numerical approach for approximating the Caputo fractional-order derivative operator,” AIMS Mathematics, vol. 6, no. 11, pp. 12743-12756, 2021, doi: 10.3934/math.2021735.
R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, and A. K. Alomari, “Numerical approach of Riemann-Liouville fractional derivative operator,” International Journal of Electrical and Computer Engineering, vol. 11, no. 6, pp. 5367-5378, 2021, doi: 10.11591/ijece.v11i6.pp5367-5378.
R. B. Albadarneh, A. M. Adawi, S. Al-Sa’di, I. M. Batiha, and S. Momani, “A pro rata definition of the fractional-order derivative,” Mathematics and Computation, vol. 418, pp. 65–79, 2022, doi: 10.1007/978-981-99-0447-1_6.
I. H. Jebril, M. S. El-Khatib, A. A. Abubaker, S. B. Al-Shaikh, and I. M. Batiha, “Results on Katugampola fractional derivatives and integrals,” International Journal of Analysis and Applications, vol. 21, 2023, doi: 10.28924/2291-8639-21-2023-113.
A. A. Kilbas, Theory and Application of Fractional Differential Equations, Elsevier: Amsterdam, 2006.
I. M. Batiha, S. Alshorm, I. H. Jebril, and M. Hammad, “A brief review about fractional calculus,” International Journal of Open Problems in Computer Science and Mathematics, vol. 15, no. 4, pp. 39-56, 2022.
I. M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, and M. Albdareen, “Modified three-point fractional formulas with Richardson extrapolation,” Mathematics, vol. 10, no. 39, 2022, doi: 10.3390/math10193489.
I. M. Batiha, S. Alshorm, I. Jebril, A. Zraiqat, Z. Momani, and S. Momani, “Modified 5-point fractional formula with Richardson extrapolation,” AIMS Mathematics, vol. 8, no. 4, pp. 9520-9534, 2023, doi: 10.3934/math.2023480.
I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “New algorithms for dealing with fractional initial value problems,” Axioms, vol. 12, no. 5, 2023, doi: 10.3390/axioms12050488.
Z. M. Odibat and S. Momani, “An algorithm for the numerical solution of differential equations of fractional order,” Journal of Applied Mathematics & Informatics, vol. 26, pp. 15-27, 2008.
R. J. Beerends, Fourier and Laplace Transforms, Cambridge University Press: Cambridge, 2003.
A. A. Al-Nana, I. M. Batiha, and S. Momani, “A numerical approach for dealing with fractional boundary value problems,” Mathematics, vol. 11, no. 19, 2023, doi: 10.3390/math11194082.
S. Alshorm, I. M. Batiha, I. Jebril and A. Dababneh, “Handling Systems of Incommensurate Fractional Order Equations Using Improved Fractional Euler Method,” 2023 International Conference on Information Technology (ICIT), pp. 657-660, 2023, doi: 10.1109/ICIT58056.2023.10226115.
J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons: Boston, 1976.
J. R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley: Boston, 1983.
DOI: https://doi.org/10.18196/jrc.v5i6.23392
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Iqbal Batiha, Amira Abdelnebi, Mohammed Shqair, Iqbal H. Jebril, Shawkat Alkhazaleh, Shaher Momani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com