Enhancing Autonomous Navigation in GNSS-Denied Environment: Obstacle Avoidance Observability-Based Path Planning for ASLAM

Samaneh Elahian, Mohammad Ali Amiri Atashgah, Iswanto Suwarno

Abstract


Obstacle avoidance (OA) is necessary for any path planning in outdoor environment to prevent any collision with the obstacles in natural environment. In this paper, a quadrotor navigates using Active Simultaneously Localization and Mapping (ASLAM) in GNSS-denied outdoor environment. In ASLAM, the quadrotor path is defined using real-time Observability Based Path Planning (OBPP) method, autonomously. To prepare using of the OBPP in outdoor environment, it is necessary to add the ability of OA to it. So, the OA-OBPP method is introduced which defines the path based on terrestrial landmarks while preventing any collision with the obstacles. This approach is developed by redefining a dataset of in range landmarks while all of the landmark in the vicinity of the obstacles are removed from the in-range landmarks dataset.  To evaluate the performance of the proposed method, simulations of the OA-OBPP algorithm are conducted for a simplified 6-Degree of Freedom (DOF) quadrotor using MATLAB. The simulations evaluate the efficiency, accuracy and robustness of the proposed method. Results across various scenarios show that the method effectively avoids collisions with obstacles while simultaneously determining a path to the goal. Additionally, a comparison of the position estimation RMSE with Monte Carlo PP highlights the accuracy of the OA-OBPP. The robustness of the method, tested with varying initial positions, demonstrates its success in real-time path planning (PP) from any starting point to the destination without collisions. The results confirm that the OA-OBPP enhances the robot's capability to perform real-time, autonomous, and robust path planning in outdoor environments, even in the absence of GNSS signals, through visual navigation.

Keywords


Obstacle Avoidance; Observability Based Path Planning; Real-Time Autonomous Path Planning; Active Simultaneously Localization and Mapping; GNSS-Denied Environment; Observability Degree.

Full Text:

PDF

References


S. Bijjahalli, R. Sabatini, and A. Gardi, “Advances in intelligent and autonomous navigation systems for small UAS,” Prog. Aerosp. Sci., vol. 115, p. 100617, 2020, doi: 10.1016/J.PAEROSCI.2020.100617.

X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The ApolloScape Open Dataset for Autonomous Driving and Its Application,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 10, pp. 2702–2719, Oct. 2020, doi: 10.1109/TPAMI.2019.2926463.

S. A. S. Mohamed, M. H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and J. Plosila, “A Survey on Odometry for Autonomous Navigation Systems,” IEEE Access, vol. 7, pp. 97466–97486, 2019, doi: 10.1109/ACCESS.2019.2929133.

N. Islam, K. Haseeb, A. Almogren, I. U. Din, M. Guizani, and A. Altameem, “A framework for topological based map building: A solution to autonomous robot navigation in smart cities,” Futur. Gener. Comput. Syst., vol. 111, pp. 644–653, Oct. 2020, doi: 10.1016/j.future.2019.10.036.

J. Li, W. Zhan, Y. Hu, and M. Tomizuka, “Generic Tracking and Probabilistic Prediction Framework and Its Application in Autonomous Driving,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3634–3649, Sep. 2020, doi: 10.1109/TITS.2019.2930310.

W. Youn, H. Ko, H. Choi, I. Choi, J. H. Baek, and H. Myung, “Collision-free Autonomous Navigation of A Small UAV Using Low-cost Sensors in GPS-denied Environments,” Int. J. Control. Autom. Syst., vol. 19, no. 2, pp. 953–968, Feb. 2021, doi: 10.1007/S12555-019-0797-7/METRICS.

N. Gyagenda, J. V. Hatilima, H. Roth, and V. Zhmud, “A review of GNSS-independent UAV navigation techniques,” Rob. Auton. Syst., vol. 152, p. 104069, Jun. 2022, doi: 10.1016/J.ROBOT.2022.104069.

A. Faghihinia, M. A. A. Atashgah, and S. M. M. Dehghan, “Model-Based Cooperative Navigation for a Group of Flying Robots,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 3895–3905, 2022, doi: 10.1109/TAES.2021.3136247.

S. Rezwan and W. Choi, “Artificial Intelligence Approaches for UAV Navigation: Recent Advances and Future Challenges,” IEEE Access, vol. 10, pp. 26320–26339, 2022, doi: 10.1109/ACCESS.2022.3157626.

Y. Xue and W. Chen, “Multi-Agent Deep Reinforcement Learning for UAVs Navigation in Unknown Complex Environment,” IEEE Trans. Intell. Veh., vol. 9, no. 1, pp. 2290–2303, Jan. 2024, doi: 10.1109/TIV.2023.3298292.

S. Zhang, Y. Li, and Q. Dong, “Autonomous navigation of UAV in multi-obstacle environments based on a Deep Reinforcement Learning approach,” Appl. Soft Comput., vol. 115, p. 108194, Jan. 2022, doi: 10.1016/J.ASOC.2021.108194.

D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural topological SLAM for visual navigation,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12875-12884, 2020, doi: 10.1109/CVPR42600.2020.01289.

T. Pire, J. Corti, and G. Grinblat, “Online Object Detection and Localization on Stereo Visual SLAM System,” J. Intell. Robot. Syst. Theory Appl., vol. 98, no. 2, pp. 377–386, May 2020, doi: 10.1007/s10846-019-01074-2.

J. C. Trujillo, R. Munguia, E. Guerra, and A. Grau, “Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments,” Sensors (Switzerland), vol. 18, no. 5, p. 1351, Apr. 2018, doi: 10.3390/s18051351.

M. Holder, S. Hellwig, and H. Winner, “Real-time pose graph SLAM based on radar,” in IEEE Intelligent Vehicles Symposium, Proceedings, pp. 1145–1151, Jun. 2019, doi: 10.1109/IVS.2019.8813841.

M. Bozorg, M. S. Bahraini, and A. B. Rad, "A new adaptive UKF algorithm to improve the accuracy of SLAM," International Journal of Robotics, Theory and Applications, vol. 5, no. 1, pp. 35-46, 2019.

Y. Zhang, T. Zhang, and S. Huang, “Comparison of EKF based SLAM and optimization based SLAM algorithms,” Proc. 13th IEEE Conf. Ind. Electron. Appl. ICIEA 2018, pp. 1308–1313, 2018, doi: 10.1109/ICIEA.2018.8397911.

A. Joukhadar, D. K. Hanna, A. Müller, and C. Stöger, “UKF-Assisted SLAM for 4WDDMR Localization and Mapping,” Mech. Mach. Sci., vol. 58, pp. 259–270, 2019, doi: 10.1007/978-3-319-89911-4_19.

Z. L. Ren, L. G. Wang, and L. Bi, “Improved Extended Kalman Filter Based on Fuzzy Adaptation for SLAM in Underground Tunnels,” Int. J. Precis. Eng. Manuf., vol. 20, no. 12, pp. 2119–2127, Dec. 2019, doi: 10.1007/s12541-019-00222-w.

G. Zhou, J. Luo, S. Xu, S. Zhang, S. Meng, and K. Xiang, “An EKF-based multiple data fusion for mobile robot indoor localization,” Assem. Autom., vol. 41, no. 3, pp. 274–282, 2021, doi: 10.1108/AA-12-2020-0199/FULL/XML.

L. Carlone, J. Du, M. Kaouk Ng, B. Bona, and M. Indri, “Active SLAM and exploration with particle filters using Kullback-Leibler divergence,” J. Intell. Robot. Syst. Theory Appl., vol. 75, no. 2, pp. 291–311, Oct. 2014, doi: 10.1007/s10846-013-9981-9.

Y. Chen, S. Huang, and R. Fitch, “Active SLAM for Mobile Robots with Area Coverage and Obstacle Avoidance,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 3, pp. 1182–1192, Jun. 2020, doi: 10.1109/TMECH.2019.2963439.

Y. B. Chen, G. C. Luo, Y. S. Mei, J. Q. Yu, and X. L. Su, “UAV path planning using artificial potential field method updated by optimal control theory,” Int. J. Syst. Sci., vol. 47, no. 6, pp. 1407–1420, Apr. 2016, doi: 10.1080/00207721.2014.929191.

J. Jiang and Y. Ma, “Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review,” Micromachines, vol. 11, no. 7, p. 633, 2020, doi: 10.3390/MI11070633.

R. Sharma, R. W. Beard, C. N. Taylor, and S. Quebe, “Graph-based observability analysis of bearing-only cooperative localization,” IEEE Trans. Robot., vol. 28, no. 2, pp. 522–529, Apr. 2012, doi: 10.1109/TRO.2011.2172699.

S. Zhang, S. Wang, S. Yu, J. J. Q. Yu, and M. Wen, "Collision Avoidance Predictive Motion Planning Based on Integrated Perception and V2V Communication," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 9640-9653, July 2022, doi: 10.1109/TITS.2022.3173674.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, Jun. 2011, doi: 10.1177/0278364911406761.

I. A. Hassan, I. A. Abed, and W. A. Al-Hussaibi, “Path Planning and Trajectory Tracking Control for Two-Wheel Mobile Robot,” J. Robot. Control, vol. 5, no. 1, pp. 1–15, 2024, doi: 10.18196/jrc.v5i1.20489.

S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges,” Comput. Commun., vol. 149, pp. 270–299, Jan. 2020, doi: 10.1016/j.comcom.2019.10.014.

Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan, “PQ-RRT*: An improved path planning algorithm for mobile robots,” Expert Syst. Appl., vol. 152, p. 113425, Aug. 2020, doi: 10.1016/j.eswa.2020.113425.

N. Abcouwer et al., “Machine Learning Based Path Planning for Improved Rover Navigation,” IEEE Aerosp. Conf. Proc., pp. 1-9, 2021, doi: 10.1109/AERO50100.2021.9438337.

N. S. Abu, W. M. Bukhari, M. H. Adli, S. N. Omar, and S. A. Sohaimeh, “A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots,” J. Robot. Control, vol. 3, no. 5, pp. 666–678, Sep. 2022, doi: 10.18196/JRC.V3I5.14683.

F. Zeng, C. Wang, and S. S. Ge, “A Survey on Visual Navigation for Artificial Agents with Deep Reinforcement Learning,” IEEE Access, vol. 8. pp. 135426–135442, 2020, doi: 10.1109/ACCESS.2020.3011438.

V. S. Kalogeiton, K. Ioannidis, G. C. Sirakoulis, and E. B. Kosmatopoulos, “Real-Time Active SLAM and Obstacle Avoidance for an Autonomous Robot Based on Stereo Vision,” Cybern. Syst., vol. 50, no. 3, pp. 239–260, Apr. 2019, doi: 10.1080/01969722.2018.1541599.

R. Sharma, “Observability based control for cooperative localization,” 2014 Int. Conf. Unmanned Aircr. Syst. ICUAS 2014 - Conf. Proc., pp. 134–139, 2014, doi: 10.1109/ICUAS.2014.6842248.

S. Elahian, M. A. Amiri Atashgah, and B. Tarverdizadeh, “a Simultaneous Path Planning and Positioning Based on Artificial Distribution of Landmarks in a Gnss Denied Environment,” Aviation, vol. 27, no. 1, pp. 36–46, 2023, doi: 10.3846/aviation.2023.18461.

J. Cheng, Y. Sun, and M. Q. H. Meng, “Improving monocular visual SLAM in dynamic environments: an optical-flow-based approach,” Adv. Robot., vol. 33, no. 12, pp. 576–589, Jun. 2019, doi: 10.1080/01691864.2019.1610060.

J. C. Trujillo, R. Munguia, S. Urzua, E. Guerra, and A. Grau, “Monocular Visual SLAM Based on a Cooperative UAV–Target System,” Sensors, vol. 20, no. 12, p. 3531, Jun. 2020, doi: 10.3390/S20123531.

R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kottege, and M. Hutter, “Perceptive whole-body planning for multilegged robots in confined spaces,” J. F. Robot., vol. 38, no. 1, pp. 68-84, 2020, doi: 10.1002/rob.21974.

A. Bettens, B. Morrell, M. Coen, X. Wu, P. Gibbens, and G. Chamitoff, “Simultaneous localization and mapping architecture for small bodies and space exploration,” Adv. Sp. Res., vol. 73, no. 1, pp. 1185–1197, Jan. 2024, doi: 10.1016/J.ASR.2023.10.048.

S. Rahman, A. Quattrini Li, and I. Rekleitis, “SVIn2: A multi-sensor fusion-based underwater SLAM system,” The International Journal of Robotics Research, vol. 41, no. 11–12, pp. 1022–1042, Jul. 2022, doi: 10.1177/02783649221110259.

N. Elmeseiry, N. Alshaer, and T. Ismail, “A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications,” Aerosp., vol. 8, no. 12, p. 363, Nov. 2021, doi: 10.3390/AEROSPACE8120363.

S. D. Apostolidis, P. C. Kapoutsis, A. C. Kapoutsis, and E. B. Kosmatopoulos, “Cooperative multi-UAV coverage mission planning platform for remote sensing applications,” Auton. Robots, vol. 46, no. 2, pp. 373–400, Feb. 2022, doi: 10.1007/S10514-021-10028-3/METRICS.

X. Xu et al., “A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR,” Remote Sens., vol. 14, no. 12, 2022, doi: 10.3390/rs14122835.

N. Delavarpour, C. Koparan, J. Nowatzki, S. Bajwa, and X. Sun, “A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges,” Remote Sens., vol. 13, no. 6, p. 1204, Mar. 2021, doi: 10.3390/RS13061204.

N. Amarasingam, A. S. Ashan Salgadoe, K. Powell, L. F. Gonzalez, and S. Natarajan, “A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops,” Remote Sens. Appl. Soc. Environ., vol. 26, p. 100712, Apr. 2022, doi: 10.1016/J.RSASE.2022.100712.

M. F. F. Rahman, S. Fan, Y. Zhang, and L. Chen, “A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture,” Agric., vol. 11, no. 1, p. 22, Jan. 2021, doi: 10.3390/AGRICULTURE11010022.

S. Granados-Bolaños, A. Quesada-Román, and G. E. Alvarado, “Low-cost UAV applications in dynamic tropical volcanic landforms,” J. Volcanol. Geotherm. Res., vol. 410, p. 107143, Feb. 2021, doi: 10.1016/J.JVOLGEORES.2020.107143.

Z. Ameli, Y. Aremanda, W. A. Friess, and E. N. Landis, “Impact of UAV Hardware Options on Bridge Inspection Mission Capabilities,” Drones., vol. 6, no. 3, p. 64, 2022, doi: 10.3390/DRONES6030064.

R. Adade, A. M. Aibinu, B. Ekumah, and J. Asaana, “Unmanned Aerial Vehicle (UAV) applications in coastal zone management—a review,” Environ. Monit. Assess., vol. 193, no. 3, pp. 1–12, Mar. 2021, doi: 10.1007/S10661-021-08949-8/METRICS.

L. Xu, X. Shao, and W. Zhang, “USDE-Based Continuous Sliding Mode Control for Quadrotor Attitude Regulation: Method and Application,” IEEE Access, vol. 9, pp. 64153–64164, 2021, doi: 10.1109/ACCESS.2021.3076076.

M. Polic, A. Ivanovic, B. Maric, B. Arbanas, J. Tabak, and M. Orsag, “Structured Ecological Cultivation with Autonomous Robots in Indoor Agriculture,” Proc. 16th Int. Conf. Telecommun. ConTEL 2021, pp. 189–195, Jun. 2021, doi: 10.23919/CONTEL52528.2021.9495963.

N. Goyal, R. Aryan, N. Sharma, and V. Chhabra, “Line Follower Cargo-Bot For Warehouse Automation,” Int. Res. J. Eng. Technol, vol. 8, pp. 1-8, 2021.

M. Idrissi, M. Salami, and F. Annaz, “A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms,” J. Intell. Robot. Syst. Theory Appl., vol. 104, no. 2, pp. 1–33, Feb. 2022, doi: 10.1007/s10846-021-01527-7.

I. Suwarno, W. A. Oktaviani, Y. Apriani, D. U. Rijalusalam, and A. Pandey, “Potential Force Algorithm with Kinematic Control as Path Planning for Disinfection Robot,” J. Robot. Control, vol. 3, no. 1, pp. 107–114, Jan. 2022, doi: 10.18196/JRC.V3I1.11528.

Y. Rasekhipour, A. Khajepour, S. K. Chen, and B. Litkouhi, “A Potential Field-Based Model Predictive Path-Planning Controller for Autonomous Road Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1255–1267, May 2017, doi: 10.1109/TITS.2016.2604240.

M. Walter and J. Leonard, “An experimental investigation of cooperative SLAM,” in IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 37, no. 8, pp. 880–885, 2004, doi: 10.1016/s1474-6670(17)32091-8.

X. Zhu, B. Yan, and Y. Yue, “Path planning and collision avoidance in unknown environments for usvs based on an improved d* Lite,” Appl. Sci., vol. 11, no. 17, p. 7863, Sep. 2021, doi: 10.3390/APP11177863/S1.

J. K. Park and T. M. Chung, “Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning,” J. Inf. Process. Syst., vol. 16, no. 6, pp. 1324–1342, Jan. 2020, doi: 10.3745/JIPS.04.0196.

L. Lu, C. Sampedro, J. Rodriguez-Vazquez, and P. Campoy, “Laser-based collision avoidance and reactive navigation using RRT∗ and signed distance field for multirotor UAVs,” 2019 Int. Conf. Unmanned Aircr. Syst. ICUAS 2019, pp. 1209–1217, Jun. 2019, doi: 10.1109/ICUAS.2019.8798124.

W. Rahmaniar and A. E. Rakhmania, “Mobile Robot Path Planning in a Trajectory with Multiple Obstacles Using Genetic Algorithms,” J. Robot. Control, vol. 3, no. 1, pp. 1–7, Jan. 2022, doi: 10.18196/JRC.V3I1.11024.

L. Hu et al., “A multiobjective optimization approach for COLREGs-Compliant path planning of autonomous surface vehicles verified on networked bridge simulators,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 1167–1179, Mar. 2020, doi: 10.1109/TITS.2019.2902927.

B. O. H. Eriksen, G. Bitar, M. Breivik, and A. M. Lekkas, “Hybrid Collision Avoidance for ASVs Compliant With COLREGs Rules 8 and 13–17,” Front. Robot. AI, vol. 7, p. 475020, Feb. 2020, doi: 10.3389/FROBT.2020.00011/BIBTEX.

H. T. L. Chiang and L. Tapia, “COLREG-RRT: An RRT-Based COLREGS-Compliant Motion Planner for Surface Vehicle Navigation,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2024–2031, Jul. 2018, doi: 10.1109/LRA.2018.2801881.

L. Zhao and M. Il Roh, “COLREGs-compliant multiship collision avoidance based on deep reinforcement learning,” Ocean Eng., vol. 191, p. 106436, Nov. 2019, doi: 10.1016/J.OCEANENG.2019.106436.

H. Lyu and Y. Yin, “COLREGS-Constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields,” J. Navig., vol. 72, no. 3, pp. 588–608, May 2019, doi: 10.1017/S0373463318000796.

S. Wen, X. Chen, C. Ma, H. K. Lam, and S. Hua, “The Q-learning obstacle avoidance algorithm based on EKF-SLAM for NAO autonomous walking under unknown environments,” Rob. Auton. Syst., vol. 72, pp. 29–36, Oct. 2015, doi: 10.1016/j.robot.2015.04.003.

I. Maurovic, M. Seder, K. Lenac, and I. Petrovic, “Path Planning for Active SLAM Based on the D∗ Algorithm with Negative Edge Weights,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 48, no. 8, pp. 1321–1331, Aug. 2018, doi: 10.1109/TSMC.2017.2668603.

D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov, “Learning to Explore using Active Neural SLAM,” arXiv preprint arXiv:2004.05155, Apr. 2020.

S. G. Jin, M. U. Ahmed, J. W. Kim, Y. H. Kim, and P. K. Rhee, “Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation,” Symmetry., vol. 12, no. 1, p. 119, Jan. 2020, doi: 10.3390/SYM12010119.

T. Małecki and J. Narkiewicz, “A collision avoidance algorithm in Simultaneous Localization and Mapping problem for mobile platforms,” J. Theor. Appl. Mech., vol. 60, no. 2, pp. 317–328, Apr. 2022, doi: 10.15632/JTAM-PL/149478.

D. Fethi, A. Nemra, K. Louadj, and M. Hamerlain, “Simultaneous localization, mapping, and path planning for unmanned vehicle using optimal control,” Adv. Mech. Eng., vol. 10, no. 1, Jan. 2018, doi: 10.1177/1687814017736653.

J. R. Sánchez-Ibáñez, C. J. Pérez-Del-pulgar, and A. García-Cerezo, “Path Planning for Autonomous Mobile Robots: A Review,” Sensors., vol. 21, no. 23, p. 7898, Nov. 2021, doi: 10.3390/S21237898.

K. Katona, H. A. Neamah, and P. Korondi, “Obstacle Avoidance and Path Planning Methods for Autonomous Navigation of Mobile Robot,” Sensors., vol. 24, no. 11, p. 3573, Jun. 2024, doi: 10.3390/S24113573.

Y. Sun et al., “Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm,” Sensors., vol. 23, no. 19, p. 8260, Oct. 2023, doi: 10.3390/S23198260.

A. Wondosen and D. Shiferaw, “Fuzzy Logic Controller Design for Mobile Robot Outdoor Navigation,” arXiv preprint arXiv:2401.01756, 2024.

H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, “Review of Autonomous Path Planning Algorithms for Mobile Robots,” Drones., vol. 7, no. 3, p. 211, Mar. 2023, doi: 10.3390/DRONES7030211.

S. Takahashi et al., “Sensor Selection by Greedy Method for Linear Dynamical Systems: Comparative Study on Fisher-Information-Matrix, Observability-Gramian and Kalman-Filter-Based Indices,” IEEE Access, vol. 11, pp. 67850–67864, 2023, doi: 10.1109/ACCESS.2023.3291415.

W. Xu, D. He, Y. Cai, and F. Zhang, “Robots’ State Estimation and Observability Analysis Based on Statistical Motion Models,” IEEE Trans. Control Syst. Technol., vol. 30, no. 5, pp. 2030–2045, Oct. 2022, doi: 10.1109/TCST.2021.3133080.

N. Powel and K. A. Morgansen, “Empirical Observability Gramian for Stochastic Observability of Nonlinear Systems,” arXiv preprint arXiv:2006.07451, 2020.

A. Nemati et al., “Autonomous navigation of UAV through GPS-denied indoor environment with obstacles,” AIAA Infotech@ Aerospace, p. 0715, 2015, doi: 10.2514/6.2015-0715.

R. J. Prazenica et al., “Vision- aided navigation for a free-flying unmanned robotic system to support interplanetary bodies prospecting and characterization missions,” AIAA Guidance, Navigation, and Control Conference, p. 0888, 2016, doi: 10.2514/6.2016-0888.

M. W. M. Gamini Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the simultaneous localization and map building (SLAM) problem,” IEEE Trans. Robot. Autom., vol. 17, no. 3, pp. 229–241, Jun. 2001, doi: 10.1109/70.938381.

H. Mailka, M. Abouzahir, and M. Ramzi, “An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles,” Multimed. Tools Appl., vol. 83, no. 18, pp. 56183–56206, May 2024, doi: 10.1007/S11042-023-17595-W/METRICS.

L. De Souza Pinto, L. E. S. A. Filho, L. Mariga, C. L. N. Junior, and W. C. Cunha, “EKF-SLAM with Autonomous Exploration using a Low Cost Robot,” 15th Annu. IEEE Int. Syst. Conf. SysCon 2021 - Proc., pp. 1-7, Apr. 2021, doi: 10.1109/SYSCON48628.2021.9447073.

Y. Song, Z. Zhang, J. Wu, Y. Wang, L. Zhao, and S. Huang, “A Right Invariant Extended Kalman Filter for Object Based SLAM,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1316–1323, Apr. 2022, doi: 10.1109/LRA.2021.3139370.

S. Rauniyar, S. Bhalla, D. Choi, and D. Kim, “EKF-SLAM for Quadcopter Using Differential Flatness-Based LQR Control,” Electron.,vol. 12, no. 5, p. 1113, Feb. 2023, doi: 10.3390/ELECTRONICS12051113.

M. Bryson and S. Sukkarieh, “Active airborne localisation and exploration in unknown environments using inertial SLAM,” IEEE Aerosp. Conf. Proc., p. 13, 2006, doi: 10.1109/aero.2006.1655801.

M. Bryson and S. Sukkarieh, “Observability analysis and active control for airborne SLAM,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 1, pp. 261–280, Jan. 2008, doi: 10.1109/TAES.2008.4517003.

Q. Ge, J. Ma, S. Chen, Y. Wang, and L. Bai, “Observable Degree Analysis to Match Estimation Performance for Wireless Tracking Networks,” Asian J. Control, vol. 19, no. 4, pp. 1259–1270, Jul. 2017, doi: 10.1002/asjc.1386.

A. T. Falahati Nodeh and B. E. Mehrababni, “Investigating the Effect of Different Sensors on the Observer Performance in Vehicle Suspension System Based on the Observable Degree Analysis (In Persian),” Modares Mech. Eng., vol. 19, no. 7, pp. 1675–1684, 2019.

Y. Liang, L. Han, X. Dong, Q. Li, and Z. Ren, “An quantitative method for observability analysis and its application in SINS calibration,” Aerosp. Sci. Technol., vol. 103, p. 105881, Aug. 2020, doi: 10.1016/j.ast.2020.105881.

L. Huang, J. Song, and C. Zhang, “Observability analysis and filter design for a vision inertial absolute navigation system for UAV using landmarks,” Optik (Stuttg)., vol. 149, pp. 455–468, 2017, doi: 10.1016/j.ijleo.2017.09.060.

F. M. Ham and R. Grover Brown, “Observability, Eigenvalues, and Kalman Filtering,” IEEE Trans. Aerosp. Electron. Syst., no. 2, pp. 269–273, 1983, doi: 10.1109/TAES.1983.309446.

S. Lakshmivarahan, J. M. Lewis, and S. K. Reddy Maryada, “Observability Gramian and Its Role in the Placement of Observations in Dynamic Data Assimilation,” Data Assim. Atmos. Ocean. Hydrol. Appl. (Vol. IV), pp. 215–257, 2022, doi: 10.1007/978-3-030-77722-7_9.

Y. Gao, K. Liu, C. Zhu, X. Zhang, and D. Zhang, “Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model,” IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 2684–2696, Mar. 2022, doi: 10.1109/TIE.2021.3066946.

J. Chen, Z. Liang, Y. Zhu, and J. Zhao, “Improving Kinematic Flexibility and Walking Performance of a Six-legged Robot by Rationally Designing Leg Morphology,” J. Bionic Eng., vol. 16, no. 4, pp. 608–620, Jul. 2019, doi: 10.1007/s42235-019-0049-9.

R. Zanetti and C. N. D’Souza, “Observability Analysis and Filter Design for the Orion Earth-Moon Attitude Filter,” J. Guid. Control. Dyn., vol. 39, no. 2, pp. 201–213, Feb. 2016, doi: 10.2514/1.G001217.

V. Tchuiev and V. Indelman, "Distributed Consistent Multi-Robot Semantic Localization and Mapping," in IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4649-4656, July 2020, doi: 10.1109/LRA.2020.3003275.

T. Dam, G. Chalvatzaki, J. Peters, and J. Pajarinen, “Monte-Carlo Robot Path Planning,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11213–11220, Oct. 2022, doi: 10.1109/LRA.2022.3199674.

A. Abrishamifar, Ahmad Ale Ahmad and S. Elahian, "Fixed frequency sliding mode controller for the buck converter," 2011 2nd Power Electronics, Drive Systems and Technologies Conference, pp. 557-561, 2011, doi: 10.1109/PEDSTC.2011.5742481.




DOI: https://doi.org/10.18196/jrc.v5i6.23519

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Samaneh Elahian, Mohammad Ali Amiri Atashgah, Iswanto Suwarno

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik