Autonomous Robotic Systems with Artificial Intelligence Technology Using a Deep Q Network-Based Approach for Goal-Oriented 2D Arm Control
Abstract
Keywords
Full Text:
PDFReferences
C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future prospects,” Journal of Industrial Information Integration, vol. 23, p. 100224, Sep. 2021, doi: 10.1016/j.jii.2021.100224.
I. H. Sarker, “AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems,” SN Computer Science, vol. 3, no. 2, Feb. 2022, doi: 10.1007/s42979-022-01043-x.
P. Wang, “On Defining Artificial Intelligence,” Journal of Artificial General Intelligence, vol. 10, no. 2, pp. 1–37, Jan. 2019, doi: 10.2478/jagi-2019-0002.
S. P. Yadav, D. P. Mahato, and N. T. D. Linh, “Distributed Artificial Intelligence,” CRC Press, 2020, doi: 10.1201/9781003038467.
Y. Li and O. Hilliges, “Artificial Intelligence for Human Computer Interaction: A Modern Approach,” Springer International Publishing, 2021, doi: 10.1007/978-3-030-82681-9.
S. Kumar, A. K. Verma, and A. Mirza, “Digitalisation, Artificial Intelligence, IoT, and Industry 4.0 and Digital Society,” Digital Transformation, Artificial Intelligence and Society, pp. 35–57, 2024, doi: 10.1007/978-981-97-5656-8_3.
V. V. Krishna, “A I and contemporary challenges: The good, bad and the scary,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 10, no. 1, p. 100178, Mar. 2024, doi: 10.1016/j.joitmc.2023.100178.
W. Wang and K. Siau, “Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work and Future of Humanity,” Journal of Database Management, vol. 30, no. 1, pp. 61–79, Jan. 2019, doi: 10.4018/jdm.2019010104.
M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, machine learning and deep learning in advanced robotics, a review,” Cognitive Robotics, vol. 3, pp. 54–70, 2023, doi: 10.1016/j.cogr.2023.04.001.
A. K. Tyagi, T. F. Fernandez, S. Mishra, and S. Kumari, “Intelligent Automation Systems at the Core of Industry 4.0,” Intelligent Systems Design and Applications, pp. 1–18, 2021, doi: 10.1007/978-3-030-71187-0_1.
T. V. N. Rao, A. Gaddam, M. Kurni, and K. Saritha, “Reliance on Artificial Intelligence, Machine Learning and Deep Learning in the Era of Industry 4.0,” Smart Healthcare System Design, pp. 281–299, Jun. 2021, doi: 10.1002/9781119792253.ch12.
L. Vandewinckele et al., “Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance,” Radiotherapy and Oncology, vol. 153, pp. 55–66, Dec. 2020, doi: 10.1016/j.radonc.2020.09.008.
K. K. H. Ng, C.-H. Chen, C. K. M. Lee, J. Roger Jiao, and Z.-X. Yang, “A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspectives,” Advanced Engineering Informatics, vol. 47, p. 101246, Jan. 2021, doi: 10.1016/j.aei.2021.101246.
Y. Himeur et al., “AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives,” Artificial Intelligence Review, vol. 56, no. 6, pp. 4929–5021, Oct. 2022, doi: 10.1007/s10462-022-10286-2.
J.-A. Johannessen. Artificial Intelligence, Automation and the Future of Competence at Work. Routledge, Dec. 2020, doi: 10.4324/9781003121923.
H. Chen et al., “From Automation System to Autonomous System: An Architecture Perspective,” Journal of Marine Science and Engineering, vol. 9, no. 6, p. 645, Jun. 2021, doi: 10.3390/jmse9060645.
F. Folgado, D. Calderón, I. González, and A. Calderón, “Review of Industry 4.0 from the Perspective of Automation and Supervision Systems: Definitions, Architectures and Recent Trends,” Electronics, vol. 13, no. 4, p. 782, Feb. 2024, doi: 10.3390/electronics13040782.
M. S. Xavier et al., “Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications,” IEEE Access, vol. 10, pp. 59442–59485, 2022, doi: 10.1109/access.2022.3179589.
D. Xie, L. Chen, L. Liu, L. Chen, and H. Wang, “Actuators and Sensors for Application in Agricultural Robots: A Review,” Machines, vol. 10, no. 10, p. 913, Oct. 2022, doi: 10.3390/machines10100913.
L. Martirano and M. Mitolo, “Building Automation and Control Systems (BACS): a Review,” 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp. 1-8, Jun. 2020, doi: 10.1109/eeeic/icpseurope49358.2020.9160662.
R. Stetter, “A Fuzzy Virtual Actuator for Automated Guided Vehicles,” Sensors, vol. 20, no. 15, p. 4154, Jul. 2020, doi: 10.3390/s20154154.
R. Sivapriyan, K. M. Rao, and M. Harijyothi, “Literature Review of IoT based Home Automation System,” 2020 Fourth International Conference on Inventive Systems and Control (ICISC), pp. 101-105, Jan. 2020, doi: 10.1109/icisc47916.2020.9171149.
S. M. Zinchenko, A. P. Ben, P. S. Nosov, I. S. Popovych, P. P. Mamenko, and V. M. Mateichuk, “Improving The Accuracy And Reliability Of Automatic Vessel Moution Control System,” Radio Electronics, Computer Science, Control, no. 2, pp. 183–195, Sep. 2020, doi: 10.15588/1607-3274-2020-2-19.
M. Bashabsheh, “Simulation of An Automatic System of Robotics for Artificial Animated Being Manufacturing Using AnyLogic Simulation Software,” International Journal of Electrical and Electronics Engineering, vol. 11, no. 5, pp. 129–137, May 2024, doi: 10.14445/23488379/ijeee-v11i5p112.
P. I. Kalandarov, Z. M. Mukimov, and A. M. Nigmatov, “Automatic Devices for Continuous Moisture Analysis of Industrial Automation Systems,” Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021), pp. 810–817, 2022, doi: 10.1007/978-3-030-85230-6_96.
C. Xia et al., “A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system,” Journal of Manufacturing Systems, vol. 57, pp. 31–45, Oct. 2020, doi: 10.1016/j.jmsy.2020.08.008.
Z. Van Veldhoven and J. Vanthienen, “Digital transformation as an interaction-driven perspective between business, society, and technology,” Electronic Markets, vol. 32, no. 2, pp. 629–644, Mar. 2021, doi: 10.1007/s12525-021-00464-5.
F. Vicentini, “Collaborative Robotics: A Survey,” Journal of Mechanical Design, vol. 143, no. 4, Oct. 2020, doi: 10.1115/1.4046238.
J. Zhu et al., “Challenges and Outlook in Robotic Manipulation of Deformable Objects,” IEEE Robotics & Automation Magazine, vol. 29, no. 3, pp. 67–77, Sep. 2022, doi: 10.1109/mra.2022.3147415.
M. Suomalainen, Y. Karayiannidis, and V. Kyrki, “A survey of robot manipulation in contact,” Robotics and Autonomous Systems, vol. 156, p. 104224, Oct. 2022, doi: 10.1016/j.robot.2022.104224.
M. Bashabsheh, “Comprehensive and Simulated Modeling of a Centralized Transport Robot Control System,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 5, 2024, doi: 10.14569/ijacsa.2024.0150552.
R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata, “Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook,” IEEE Access, vol. 8, pp. 220121–220139, 2020, doi: 10.1109/access.2020.3042874.
D. Carou, A. Sartal, and J. P. Davim, “Machine Learning and Artificial Intelligence with Industrial Applications,” Springer International Publishing, 2022, doi: 10.1007/978-3-030-91006-8.
B. Ferreira and J. Reis, “A Systematic Literature Review on the Application of Automation in Logistics,” Logistics, vol. 7, no. 4, p. 80, Nov. 2023, doi: 10.3390/logistics7040080.
S.-H. Chung, “Applications of smart technologies in logistics and transport: A review,” Transportation Research Part E: Logistics and Transportation Review, vol. 153, p. 102455, Sep. 2021, doi: 10.1016/j.tre.2021.102455.
M. Raj and R. Seamans, “Primer on artificial intelligence and robotics,” Journal of Organization Design, vol. 8, no. 1, May 2019, doi: 10.1186/s41469-019-0050-0.
K. Rusia, S. Rai, A. Rai, and S. V. Kumar Karatangi, “Artificial Intelligence and Robotics: Impact & Open issues of automation in Workplace,” 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), vol. 8, pp. 54–59, Mar. 2021, doi: 10.1109/icacite51222.2021.9404749.
Y. Yang, Y. Wu, C. Li, X. Yang, and W. Chen, “Flexible Actuators for Soft Robotics,” Advanced Intelligent Systems, vol. 2, no. 1, Dec. 2019, doi: 10.1002/aisy.201900077.
L. Iocchi et al., “Development of intelligent service robots,” Intelligenza Artificiale, vol. 7, no. 2, pp. 139–152, 2013, doi: 10.3233/ia-130055.
A. Dzedzickis, J. Subačiūtė-Žemaitienė, E. Šutinys, U. Samukaitė-Bubnienė, and V. Bučinskas, “Advanced Applications of Industrial Robotics: New Trends and Possibilities,” Applied Sciences, vol. 12, no. 1, p. 135, Dec. 2021, doi: 10.3390/app12010135.
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021, doi: 10.1109/jas.2020.1003381.
J. H. Jung and D.-G. Lim, “Industrial robots, employment growth, and labor cost: A simultaneous equation analysis,” Technological Forecasting and Social Change, vol. 159, p. 120202, Oct. 2020, doi: 10.1016/j.techfore.2020.120202.
X. Chen, X. Huang, Y. Wang, and X. Gao, “Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, pp. 3140–3147, Dec. 2020, doi: 10.1109/tnsre.2020.3038209.
M. Raj and R. Seamans, “Primer on artificial intelligence and robotics,” Journal of Organization Design, vol. 8, no. 1, May 2019, doi: 10.1186/s41469-019-0050-0.
R. Azmeera, “Robotics Process Automation: Artificial Intelligence with SAP,” International Journal of Science and Research (IJSR), vol. 12, no. 11, pp. 1871–1876, Nov. 2023, doi: 10.21275/sr231126070716.
S. Cebollada, L. Payá, M. Flores, A. Peidró, and O. Reinoso, “A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data,” Expert Systems with Applications, vol. 167, p. 114195, Apr. 2021, doi: 10.1016/j.eswa.2020.114195.
J. Long, J. Mou, L. Zhang, S. Zhang, and C. Li, “Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots,” Journal of Manufacturing Systems, vol. 61, pp. 736–745, Oct. 2021, doi: 10.1016/j.jmsy.2020.08.010.
K. Nam, C. S. Dutt, P. Chathoth, A. Daghfous, and M. S. Khan, “The adoption of artificial intelligence and robotics in the hotel industry: prospects and challenges,” Electronic Markets, vol. 31, no. 3, pp. 553–574, Oct. 2020, doi: 10.1007/s12525-020-00442-3.
M. Aljalal, S. Ibrahim, R. Djemal, and W. Ko, “Comprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signals,” Intelligent Service Robotics, vol. 13, no. 4, pp. 539–563, Jun. 2020, doi: 10.1007/s11370-020-00328-5.
G. Shi, D. Li, Y. Ding, and Y. Q. Chen, “Desired dynamic equational proportional‐integral‐derivative controller design based on probabilistic robustness,” International Journal of Robust and Nonlinear Control, vol. 32, no. 18, pp. 9556–9592, Jul. 2021, doi: 10.1002/rnc.5667.
M. Samuel, M. Mohamad, M. Hussein, and S. M. Saad, “Lane Keeping Maneuvers Using Proportional Integral Derivative (PID) and Model Predictive Control (MPC),” Journal of Robotics and Control (JRC), vol. 2, no. 2, 2021, doi: 10.18196/jrc.2256.
A. R. Al Tahtawi, M. Agni, and T. D. Hendrawati, “Small-scale Robot Arm Design with Pick and Place Mission Based on Inverse Kinematics,” Journal of Robotics and Control (JRC), vol. 2, no. 6, 2021, doi: 10.18196/jrc.26124.
L. Yiyang, J. Xi, B. Hongfei, W. Zhining, and S. Liangliang, “A General Robot Inverse Kinematics Solution Method Based on Improved PSO Algorithm,” IEEE Access, vol. 9, pp. 32341–32350, 2021, doi: 10.1109/access.2021.3059714.
J. A. Abdor-Sierra, E. A. Merchán-Cruz, and R. G. Rodríguez-Cañizo, “A comparative analysis of metaheuristic algorithms for solving the inverse kinematics of robot manipulators,” Results in Engineering, vol. 16, p. 100597, Dec. 2022, doi: 10.1016/j.rineng.2022.100597.
[32] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-Based Deep Learning,” Proceedings of the IEEE, vol. 111, no. 5, pp. 465–499, May 2023, doi: 10.1109/jproc.2023.3247480.
W. Li, H. Yuan, S. Li, and J. Zhu, “A Revisit to Model-Free Control,” IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 14408–14421, Dec. 2022, doi: 10.1109/tpel.2022.3197692.
B. Zhang and P. Liu, “Model-Based and Model-Free Robot Control: A Review,” RiTA 2020, pp. 45–55, 2021, doi: 10.1007/978-981-16-4803-8_6.
C. Zhang, C. Cen, and J. Huang, “An Overview of Model-Free Adaptive Control for the Wheeled Mobile Robot,” World Electric Vehicle Journal, vol. 15, no. 9, p. 396, Aug. 2024, doi: 10.3390/wevj15090396.
P. Ladosz, L. Weng, M. Kim, and H. Oh, “Exploration in deep reinforcement learning: A survey,” Information Fusion, vol. 85, pp. 1–22, Sep. 2022, doi: 10.1016/j.inffus.2022.03.003.
S. E. Li, “Deep Reinforcement Learning,” Reinforcement Learning for Sequential Decision and Optimal Control, pp. 365–402, 2023, doi: 10.1007/978-981-19-7784-8_10.
X. Wang et al., “Deep Reinforcement Learning: A Survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 4, pp. 5064–5078, Apr. 2024, doi: 10.1109/tnnls.2022.3207346.
Y. Yang, L. Juntao, and P. Lingling, “Multi‐robot path planning based on a deep reinforcement learning DQN algorithm,” CAAI Transactions on Intelligence Technology, vol. 5, no. 3, pp. 177–183, Aug. 2020, doi: 10.1049/trit.2020.0024.
E. Khelifi, A. Saki, and U. Faghihi, “Causal Deep Q Networks,” Advances and Trends in Artificial Intelligence. Theory and Applications, pp. 254–264, 2024, doi: 10.1007/978-981-97-4677-4_21.
J. Li, Y. Chen, X. Zhao, and J. Huang, “An improved DQN path planning algorithm,” The Journal of Supercomputing, vol. 78, no. 1, pp. 616–639, May 2021, doi: 10.1007/s11227-021-03878-2.
J. Wan, X. Li, H.-N. Dai, A. Kusiak, M. Martinez-Garcia, and D. Li, “Artificial-Intelligence-Driven Customized Manufacturing Factory: Key Technologies, Applications, and Challenges,” Proceedings of the IEEE, vol. 109, no. 4, pp. 377–398, Apr. 2021, doi: 10.1109/jproc.2020.3034808.
J. Escobar-Naranjo, G. Caiza, P. Ayala, E. Jordan, C. A. Garcia, and M. V. Garcia, “Autonomous Navigation of Robots: Optimization with DQN,” Applied Sciences, vol. 13, no. 12, p. 7202, Jun. 2023, doi: 10.3390/app13127202.
Ó. Pérez-Gil et al., “DQN-Based Deep Reinforcement Learning for Autonomous Driving,” Advances in Physical Agents II, pp. 60–76, Nov. 2020, doi: 10.1007/978-3-030-62579-5_5.
Y.-C. Wu, T. Q. Dinh, Y. Fu, C. Lin, and T. Q. S. Quek, “A Hybrid DQN and Optimization Approach for Strategy and Resource Allocation in MEC Networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4282–4295, Jul. 2021, doi: 10.1109/twc.2021.3057882.
Q. Wu et al., “Position Control of Cable-Driven Robotic Soft Arm Based on Deep Reinforcement Learning,” Information, vol. 11, no. 6, p. 310, Jun. 2020, doi: 10.3390/info11060310.
J. Hwangbo et al., “Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, no. 26, Jan. 2019, doi: 10.1126/scirobotics.aau5872.
H. Liang, X. Lou, Y. Yang, and C. Choi, “Learning Visual Affordances with Target-Orientated Deep Q-Network to Grasp Objects by Harnessing Environmental Fixtures,” 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2562-2568, May 2021, doi: 10.1109/icra48506.2021.9561737.
K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot navigation: A review,” Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691, Oct. 2021, doi: 10.26599/tst.2021.9010012.
H. Li, Q. Zhang, and D. Zhao, “Deep Reinforcement Learning-Based Automatic Exploration for Navigation in Unknown Environment,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 6, pp. 2064–2076, Jun. 2020, doi: 10.1109/tnnls.2019.2927869.
W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey,” 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737-744, Dec. 2020, doi: 10.1109/ssci47803.2020.9308468.
N. Gupta and P. K. Gupta, “Robotics and Artificial Intelligence (AI) in Agriculture with Major Emphasis on Food Crops,” Digital Agriculture, pp. 577–605, 2024, doi: 10.1007/978-3-031-43548-5_19.
A. Jafari-Tabrizi and D. P. Gruber, “Reinforcement-Learning-based Control of an Industrial Robotic Arm for Following a Randomly-Generated 2D-Trajectory,” 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), vol. 518, pp. 1–6, Aug. 2021, doi: 10.1109/coins51742.2021.9524158.
D. Han, B. Mulyana, V. Stankovic, and S. Cheng, “A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation,” Sensors, vol. 23, no. 7, p. 3762, Apr. 2023, doi: 10.3390/s23073762.
M. Al‐Gabalawy, “Path planning of robotic arm based on deep reinforcement learning algorithm,” Advanced Control for Applications, vol. 4, no. 1, Mar. 2022, doi: 10.1002/adc2.79.
S. Balhara et al., “A survey on deep reinforcement learning architectures, applications and emerging trends,” IET Communications, Jul. 2022, doi: 10.1049/cmu2.12447.
M. Botvinick, J. X. Wang, W. Dabney, K. J. Miller, and Z. Kurth-Nelson, “Deep Reinforcement Learning and Its Neuroscientific Implications,” Neuron, vol. 107, no. 4, pp. 603–616, Aug. 2020, doi: 10.1016/j.neuron.2020.06.014.
S. Carta, A. Ferreira, A. S. Podda, D. Reforgiato Recupero, and A. Sanna, “Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting,” Expert Systems with Applications, vol. 164, p. 113820, Feb. 2021, doi: 10.1016/j.eswa.2020.113820.
T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “Model-based Reinforcement Learning: A Survey,” Foundations and Trends® in Machine Learning, vol. 16, no. 1, pp. 1–118, 2023, doi: 10.1561/2200000086.
T. Zhang and H. Mo, “Reinforcement learning for robot research: A comprehensive review and open issues,” International Journal of Advanced Robotic Systems, vol. 18, no. 3, p. 172988142110073, May 2021, doi: 10.1177/17298814211007305.
Q. Huang, “Model-Based or Model-Free, a Review of Approaches in Reinforcement Learning,” 2020 International Conference on Computing and Data Science (CDS), pp. 219-221, Aug. 2020, doi: 10.1109/cds49703.2020.00051.
A. Moudgalya, A. Shafi, and B. A. Arun, “A Comparative Study of Model-Free Reinforcement Learning Approaches,” Advanced Machine Learning Technologies and Applications, pp. 547–557, May 2020, doi: 10.1007/978-981-15-3383-9_50.
M. Sewak, S. K. Sahay, and H. Rathore, “Value-Approximation based Deep Reinforcement Learning Techniques: An Overview,” 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), pp. 379–384, Oct. 2020, doi: 10.1109/iccca49541.2020.9250787.
Y. Zhao, Y. Wang, Y. Tan, J. Zhang, and H. Yu, “Dynamic Jobshop Scheduling Algorithm Based on Deep Q Network,” IEEE Access, vol. 9, pp. 122995–123011, 2021, doi: 10.1109/access.2021.3110242.
Y. T. Quek, L. L. Koh, N. T. Koh, W. A. Tso, and W. L. Woo, “Deep Q‐network implementation for simulated autonomous vehicle control,” IET Intelligent Transport Systems, vol. 15, no. 7, pp. 875–885, May 2021, doi: 10.1049/itr2.12067.
T. Li, X. Zhu, and X. Liu, “An End-to-End Network Slicing Algorithm Based on Deep Q-Learning for 5G Network,” IEEE Access, vol. 8, pp. 122229–122240, 2020, doi: 10.1109/access.2020.3006502.
Y. Huang, “Deep Q-Networks,” Deep Reinforcement Learning, pp. 135–160, 2020, doi: 10.1007/978-981-15-4095-0_4.
H. Zhang, R. Huang, and S. Zhang, “Integrating Learning and Planning,” Deep Reinforcement Learning, pp. 307–316, 2020, doi: 10.1007/978-981-15-4095-0_9.
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: 10.1109/tnnls.2021.3084827.
S. Zhao and B. Zhang, “Learning Salient and Discriminative Descriptor for Palmprint Feature Extraction and Identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5219–5230, Dec. 2020, doi: 10.1109/tnnls.2020.2964799
Z. Lu and R. Huang, “Autonomous mobile robot navigation in uncertain dynamic environments based on deep reinforcement learning,” 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), vol. 518, pp. 423–428, Jul. 2021, doi: 10.1109/rcar52367.2021.9517635.
W. Guan, W. Luo, and Z. Cui, “Intelligent decision-making system for multiple marine autonomous surface ships based on deep reinforcement learning,” Robotics and Autonomous Systems, vol. 172, p. 104587, Feb. 2024, doi: 10.1016/j.robot.2023.104587.
V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.
H. Wang et al., “Deep reinforcement learning: a survey,” Frontiers of Information Technology & Electronic Engineering, vol. 21, no. 12, pp. 1726–1744, Oct. 2020, doi: 10.1631/fitee.1900533.
A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, “Explainability in deep reinforcement learning,” Knowledge-Based Systems, vol. 214, p. 106685, Feb. 2021, doi: 10.1016/j.knosys.2020.106685.
A. Iftikhar, M. A. Ghazanfar, M. Ayub, S. Ali Alahmari, N. Qazi, and J. Wall, “A reinforcement learning recommender system using bi-clustering and Markov Decision Process,” Expert Systems with Applications, vol. 237, p. 121541, Mar. 2024, doi: 10.1016/j.eswa.2023.121541.
V. Zobernig et al., “RangL: A Reinforcement Learning Competition Platform,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4168309.
N. Dalla Pozza, L. Buffoni, S. Martina, and F. Caruso, “Quantum reinforcement learning: the maze problem,” Quantum Machine Intelligence, vol. 4, no. 1, May 2022, doi: 10.1007/s42484-022-00068-y.
DOI: https://doi.org/10.18196/jrc.v5i6.23850
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Murad Bashabsheh
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com