Adaptive threshold PCA for fault detection and isolation
Abstract
Keywords
Full Text:
PDFReferences
S. Krishnannair and C. Aldrich, “Fault detection in the Tennessee Eastman benchmark process with nonlinear singular spectrum analysis,” IFAC PaperOnLine, vol. 50, no. 1, 2017, pp. 8005–8010.
S. Yin, S. Ding, A. Haghani, H. Hao and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process ,” Journal of Process Control, vol. 22, 2012, pp. 1567–1581.
Y. Du and D. Du, “Fault detection and diagnosis using empirical mode decomposition based principal component analysis,” Computers and Chemical Engineering, vol. 115, 2018, pp. 1–21.
J. Chen, W. Zhang, and H.V. Poor, “An FDR-oriented approach to multiple sequential fault detection and isolation,” in 2017 55th Annual Allerton Conference on Communication, Control and Computing, Monticello, 2017, pp. 112–125.
K. Khakipour, A. Safavi and P. Setoodeh, “Bearing fault diagnosis with morphological gradient wavelet,” Journal of the Franklin Institute, vol. 354, 2017, pp. 2465–2476.
R. Gopinath, C. Santhosh-Kumar, K. Ramachandran, V. Upendranath and P. Sai-Kiran, “Intelligent fault diagnosis of synchronous generators,” Expert Systems with Applications, vol. 45, 2016, pp. 142–149.
F. Zhou, J. Park and Y. Liu, “Differential feature based hierarchical PCA fault detection method for dynamic fault,” Neurocomputing, vol. 202, 2016, pp. 27–35.
C. Lau, K. Ghosh, M. Hussain and C.C: Hassan, “Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS,” Chemometrics and Intelligent Laboratory Systems, vol. 120, 2013, pp. 1–14.
M.Z. Sheriff, M. Mansouri, M.N. Karim, H. Nounou and M. Nounou, “Fault detection using multi-scale PCA-based moving window GLRT,” Journal of Process Control, vol. 54, 2017, pp. 47–64.
J. Downs and E. Vogel, “A plant-wide industrial process control problem,” Computers and Chemical Engineering, vol. 17, no. 3, 1993, pp. 245–255.
H. Chen. P. Tinǒ and X. Yao, “Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space,” Computer and Chemical Engineering, vol. 67, 2014, pp. 33–42.
D.V. Ramana and S. Baskar, “Incipient fault detection of the inverter fed induction motor drive,” International Journal of Power Electronics and Drive Systems, vol. 8, no. 2, 2017, pp. 722–729.
A. Bathelt, N. Ricker and M. Jelali, “Revision on the Tennessee Eastman process model,” IFAC Papers-Online, vol. 48, no. 8, 2015, pp. 309–314.
X. Gao and J. Hou, “An improved SVM integrated GS-PCA fault diagnosis approach of the Tennessee Eastman process,” Neurocomputing, vol. 174, 2016, pp. 906–911.
M.Z. Sheriff, N. Basha, M.N. Karim, H. Nounou and M. Nounou, “Fault detection of single and interval valued data using statistical process monitoring techniques,” in book: Fault Detection, Diagnosis and Prognosis, University of Castile, 2020, pp. 1–21.
A. Alkaya and I. Eker, “Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application,” ISA Transactions, vol. 50, 2011, pp. 287–302.
K. Liu, Z. Fei, B. Yue, J. Liang and H. Lin, “Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation,” Chemometrics and Intelligent Laboratory Systems, vol. 146, 2015, pp. 426–436.
V.K. Kandula. Fault detection in process control plants using principal component analysis. Master’s thesis, Luisiana State University and Agricultural and Mechanical College, 2011.
J.L. Devore. Probability and statistics for engineering and the science, 9nd ed., Cengage Learning, Boston, USA, 2014, pp. 354–356.
N. Ayech, C. Chackour and M.F. Harkat, “New adaptive moving window PCA for process monitoring,” IFAC PapersOnLine, vol. 45, no. 20, 2012, pp. 606–611.
B. Mnassari, E. El-Adel and M. Ouladsine, “Generalization and analysis of sufficient conditions for PCA-based fault detectability and isolability,” Annual Reviews in Control, vol. 37, 2013, pp. 154–162.
A. Casavola and G. Gagliardi, “Fault detection and isolation of electrical induction motors via LPV fault observers: a case study,” International Journal of Robust and Nonlinear Control, vol. 25, 2015, pp. 627–648.
K. Salahshoor and F. Kiasi, “On-line process monitoring based on wavelet-ICA methodology,” IFAC Proceedings Volumes, vol. 41, no. 2, 2008, pp. 7413–7420.
L. Lou, S. Bao and C. Tong, “Sparse robust principal component analysis with applications to fault detection and diagnosis,” Industrial & Engineering Chemistry Research, vol. 58, 2019, pp. 1300–1309.
T. Ait-Izem, M. Harkat, M. Djeghaba and F. Kratz, “On the application of interval PCA to process monitoring: A robust strategy for sensor FDI with new efficient control statistics,” Journal of Process Control, vol. 63, 2018, pp. 29–46.
C. Chakour, A. Benyounes and M. Boudiaf, “Diagnosis of uncertain nonlinear systems using interval kernel principal component analysis: Application to a weather station,” ISA Transactions, vol. 83, 2018, pp. 126–141.
M. Mansouri, M. Harkat and M.N.H. Nounou, “Midpoint-radii principal component analysis-based EWMA and application to air quality monitoring network,” Chemometrics and Intelligent Laboratoty Systems, vol. 175, 2018, pp. 55–64.
E. Vanhatalo, M. Kulahci and B. Bergquist, “On the structure of dynamical principal component analysis used in statistical process monitoring,” Chemometrics and Intelligent Laboratory Systems, vol. 167, 2017, pp. 1–11.
H. Cheng, M. Nikus and S. Jämsä, “Evaluation of PCA methods with improved fault isolation capabilities on a paper machine simulator,” Chemometrics and Intelligent Laboratory Systems, vol. 92, 2008, pp. 186–199.
R.T. Samuel and Y. Cao, “Dynamic latent variable modeling and fault detection of Tennessee Eastman challenge process,” in 2016 IEEE International Conference on Industrial Engineering (ICIT), Taipei, 2016, pp. 842–847.
Y.H. He, Y. Zhao, X. Hu, X.N. Yan, Q.X. Zhu and Y. Xu, “Fault diagnosis using novel AdaBoost based discriminant locality preserving projections with resamples,” Enginnering Applications of Artificial Intelligence, vol. 91, 2020, pp. 103631.
F. Serdio, E. Lughofer, K. Pichler, T. Buchegger and H. Efendic, “Resudual-based fault detection using soft computing techniques for condition monitoring at rolling mills,” Information Science, vol. 259, 2014, pp. 304–320.
X. Gao and J. Hou, “An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process,” Neurocomputing, vol. 174, 2016, pp. 906–911.
D. Xie and L. Bai, “A hierarchical deep neural network for fault diagnosis on Tennessee Eastman process,” in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, 2015, pp. 745–748.
I. Prasojo, A. Maseleno, O. Tanane and N. Shahu, “Design of automatic watering system based on Arduino,” Journal of Robotics and Control, vol. 1, no. 2, 2020, pp. 55–58.
DOI: https://doi.org/10.18196/jrc.2364
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Journal of Robotics and Control (JRC)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com