Internet of Things Applications in Precision Agriculture: A Review

N. S. Abu, W. M. Bukhari, C. H. Ong, A. M. Kassim, T. A. Izzuddin, M. N. Sukhaimie, M. A. Norasikin, A. F. A. Rasid

Abstract


The goal of this paper is to review the implementation of an Internet of Things (IoT)-based system in the precision agriculture sector. Each year, farmers suffer enormous losses as a result of insect infestations and a lack of equipment to manage the farm effectively. The selected article summarises the recommended systematic equipment and approach for implementing an IoT in smart farming. This review's purpose is to identify and discuss the significant devices, cloud platforms, communication protocols, and data processing methodologies. This review highlights an updated technology for agricultural smart management by revising every area, such as crop field data and application utilization. By customizing their technology spending decisions, agriculture stakeholders can better protect the environment and increase food production in a way that meets future global demand. Last but not least, the contribution of this research is that the use of IoT in the agricultural sector helps to improve sensing and monitoring of production, including farm resource usage, animal behavior, crop growth, and food processing. Also, it provides a better understanding of the individual agricultural circumstances, such as environmental and weather conditions, the growth of weeds, pests, and diseases.

Keywords


Internet of Things; Precision agriculture; Data management; Crop monitoring; Smart farming

Full Text:

PDF

References


S. P. Jaiswal, V. S. Bhadoria, A. Agrawal and H. Ahuja, “Internet of Things (IoT) For Smart Agriculture and Farming in Developing Nations,” International Journal of Scientific & Technology Research (IJSTR), vol. 8, no. 12, pp. 1049-1056, 2019.

O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4758-3775, 2018, 10.1109/JIOT.2018.2844296.

S. A. Lokhande, “Effective use of big data in precision agriculture,” Proc. Int. Conf. Emerg. Smart Comput. Informat. (ESCI), 2021, pp. 312–316, doi: 10.1109/ESCI50559.2021.9396813.

T. Kounalakis, G. A. Triantafyllidis, and L. Nalpantidis, “Deep learning-based visual recognition of rumex for robotic precision farming,” Comput. Electron. Agricult., vol. 165, Oct. 2019, Art. no. 104973, doi: 10.1016/j.compag.2019.104973.

C.-L. Chang and K.-M. Lin, “Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme,” Robotics, vol. 7, no. 3, p. 38, Jul. 2018, doi: 10.3390/robotics7030038.

R. R. Shamshiri, C. Weltzien, I. A. Hameed, I. J. Yule, T. E. Grift, S. K. Balasundram, L. Pitonakova, D. Ahmad, G. Chowdhary, “Research and development in agricultural robotics: A perspective of digital farming,” Int. J. Agric. Biol. Eng., vol. 11, pp. 1–14 2018.

R. Murugesan, S. K. Sudarsanam, G. Malathi, V. Vijayakumar, V. Neelanarayanan, R. Venugopal, D. Rekha, S. Saha, R. Bajaj, A. Miral, et al. “Artificial Intelligence and Agriculture 5. 0,” Int. J. Recent Technol. Eng., vol. 8, pp. 1870–1877 2019.

S. Li, F. Yuan, S. T. Ata-UI-Karim, H. Zheng, T. Cheng, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, “Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens., vol. 11, p. 1763, 2019.

S. Li, X. Ding, Q. Kuang, S.T. Ata-UI-Karim, T. Cheng, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, “Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status,” Front. Plant Sci., vol. 9, pp. 1–14, 2018.

R. S. Alonso, I. Sittón-Candanedo, Ó. García, J. Prieto, S. Rodríguez-González, “An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario,” Ad Hoc Netw., vol. 98, p. 102047, 2020.

L. Han, G. Yang, H. Yang, B. Xu, Z. Li, X. Yang, “Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach,” Front. Plant Sci., vol. 9, pp. 1–18, 2018.

E. Boonchieng, O. Chieochan, A. Saokaew, “Smart Farm: Applying the Use of NodeMCU, IOT, NETPIE and LINE API for a Lingzhi Mushroom Farm in Thailand,” IEICE Trans. Commun., vol. 101, no. 1, pp. 16–23, 2018.

C. Cambra, S. Sendra, J. Lloret, and R. Lacuesta, “Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming,” Sensors, vol. 18, p. 1333, 2018.

M. S. Azimi Mahmud, S. Buyamin, M. M. Mokji, M. S. Z. Abidin, “Internet of Things based Smart Environmental Monitoring for Mushroom Cultivation,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 3, pp. 847–852, 2018.

H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, and M. Abu-AlShaeer, “Power reduction with sleep/wake on redundant data (SWORD) in a wireless sensor network for energy-efficient precision agriculture,” Sensors, vol. 18, no. 10, p. 3450, Oct. 2018, doi: 10.3390/s18103450.

X.-B. Jin, N.-X. Yang, X.-Y. Wang, Y.-T. Bai, T.-L. Su, and J.-L. Kong, “Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model,” Sensors, vol. 20, no. 5, p. 1334, Feb. 2020, doi: 10.3390/s20051334.

J. Xia, B. Huang, Y. W. Yang, H. X. Cao, W. Zhang, L. Xu, Q. Wan, Y. Ke, W. Zhang, and D. Ge, “Hyperspectral Identification and Classification of Oilseed Rape Waterlogging Stress Levels Using Parallel Computing,” IEEE Access, vol. 6, pp. 57663–57675, 2018.

J. Xue, Y. Fan, B. Su, S. Fuentes, “Assessment of canopy vigor information from kiwifruit plants based on a digital surface model from unmanned aerial vehicle imagery,” Int. J. Agric. Biol. Eng., vol. 12, pp. 165–171, 2019.

M. A. Uddin, A. Mansour, D. L. Jeune, M. Ayaz, E.-H. M. Aggoune, “UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring,” Sensors, vol. 18, p. 555, 2018.

S. Sadowski and P. Spachos, “Wireless technologies for smart agricultural monitoring using Internet of Things devices with energy harvesting capabilities,” Comput. Electron. Agricult., vol. 172, p. 105338, 2020, doi: 10.1016/j.compag.2020.105338.

S. Trilles, A. González-Pérez, and J. Huerta, “A Comprehensive IoT Node Proposal Using Open Hardware. A Smart Farming Use Case to Monitor Vineyards,” Electronics, vol. 7, p. 419, 2018.

X. Li, Z. Ma, J. Zheng, Y. Liu, L. Zhu, N. Zhou, “An effective edge-assisted data collection approach for critical events in the SDWSN-based agricultural internet of things,” Electronics, vol. 9, p. 907, 2020.

G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoraFarM: A LoRaWAN-based smart farming modular IoT architecture,” Sensors, vol. 20, no. 7, p. 2028, 2020.

T. H. Kim, V. S. Solanki, H. J. Baraiya, A. Mitra, H. Shah, and S. Roy, “A smart, sensible agriculture system using the exponential moving average model,” Symmetry, vol. 12, p. 457, 2020.

A. Luis Bustamante, M. A. Patricio, and J. M. Molina, “Thinger.io: An Open Source Platform for Deploying Data Fusion Applications in IoT Environments,” Sensors, vol. 19, p. 1044, 2019.

K. Gunasekera, A. N. Borrero, F. Vasuian, and K. P. Bryceson, “Experiences in building an IoT infrastructure for agriculture education,” Procedia Comput. Sci., vol. 135, pp. 155–162, 2018.

P. Sihombing, M. Zarlis, and Herriyance, “Automatic nutrition detection system (ANDES) for hydroponic monitoring by using micro controller and smartphone android,” in Proc. 4th Int. Conf. Informat. Comput. (ICIC), Oct. 2019, pp. 1–6, doi: 10.1109/ICIC47613.2019.8985851.

Z. Zhai, J.-F. Martínez Ortega, N. Lucas Martínez, and J. Rodríguez-Molina, “A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization,” Sensors, vol. 18, p. 1795, 2018.

Q. Cao, Y. Miao, J. Shen, F. Yuan, S. Cheng, and Z. Cui, “Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis ofWinter Wheat Nitrogen Status,” Agronomy, vol. 8, p. 201, 2018.

T. Zhang, W. Zhou, F. Meng, and Z. Li, “Efficiency Analysis and Improvement of an Intelligent Transportation System for the Application in Greenhouse,” Electronics, vol. 8, p. 946, 2019.

S. Lee, Y. Jeong, S. Son, B. Lee, “A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning,” Sustainability, vol. 11, no. 13, p. 3637, 2019.

K. Foughali, K. Fathallah, and A. Frihida, “Using Cloud IOT for disease prevention in precision agriculture,” Procedia Comput. Sci., vol. 130, pp. 575–582, 2018.

T. Gayathri Devi, A. Srinivasan, S. Sudha, and D. Narasimhan, “Web enabled paddy disease detection using Compressed Sensing,” Math. Biosci. Eng., vol. 16, pp. 7719–7733, 2019.

S. Kim, M. Lee, C. Shin, “IoT-Based Strawberry Disease Prediction System for Smart Farming,” Sensors, vol. 18, p. 4051, 2018.

D. Reynolds, J. Ball, A. Bauer, R. Davey, S. Griths, and J. Zhou, “CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management,” Gigascience, vol. 8, pp. 1–11, 2019.

L. M. Fernández-Ahumada, J. Ramírez-Faz, M. Torres-Romero, R. López-Luque, “Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies,” Sensors, vol. 19, p. 2318, 2019.

J. M. Domínguez-Niño, J. Oliver-Manera, J. Girona, J. Casadesús, “Dierential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors,” Agric. Water Manag., vol. 228, p. 105880, 2020.

N. G. S. Campos, A. R. Rocha, R. Gondim, T. L. C. da Silva, D.G. Gomes, “Smart & green: An internet-of-things framework for smart irrigation,” Sensors, vol. 20, p. 190, 2020.

M. K. I. Abd Rahman, M. S. Zainal Abidin, S. Buyamin, M. S. Azimi Mahmud, “Enhanced Fertigation Control System towards Higher Water Saving Irrigation,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, pp. 859–866, 2018.

M. Muñoz, J. D. Gil, L. Roca, F. Rodríguez, and M. Berenguel, “An iot architecture for water resource management in agroindustrial environments: A case study in almería (Spain),” Sensors, vol. 20, p. 596, 2020.

Y. Rivas-Sánchez, M. Moreno-Pérez, and J. Roldán-Cañas, “Environment Control with Low-Cost Microcontrollers and Microprocessors: Application for Green Walls,” Sustainability, vol. 11, p. 782, 2019.

F. Adenugba, S. Misra, R. Maskeliūnas, R. Damaševičius, and E. Kazanavičius, “Smart irrigation system for environmental sustainability in Africa: An Internet of Everything (IoE) approach,” Math. Biosci. Eng., vol. 16, pp. 5490–5503, 2019.

J. Tervonen, “Experiment of the quality control of vegetable storage based on the Internet-of-Things,” Procedia Comput. Sci., vol. 130, pp. 440–447, 2018.

W. Jiang, “An Intelligent Supply Chain Information Collaboration Model Based on Internet of Things and Big Data,” IEEE Access, vol. 7, pp. 58324–58335, 2019.

A. Zervopoulos, A. Tsipis, A. G. Alvanou, K. Bezas, A. Papamichail, S. Vergis, A. Stylidou, G. Tsoumanis, V. Komianos, G. Koufoudakis, et al., “Wireless sensor network synchronization for precision agriculture applications,” Agriculture, vol. 10, p. 89, 2020.

D. R. Vincent, N. Deepa, D. Elavarasan, K. Srinivasan, S. H. Chauhdary, and C. Iwendi, “Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land Suitability,” Sensors, vol. 19, p. 3667, 2019.

N. Jain, “WSN-AI based Cloud Computing Architectures for Energy Efficient Climate Smart Agriculture with Big Data analysis,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, pp. 91–97, 2019.

M. G. González-González, J. Gómez-Sanchis, J. Blasco, E. Soria-Olivas, P. Chueca, “CitrusYield: A dashboard for mapping yield and fruit quality of citrus in precision agriculture,” Agronomy, vol. 10, p. 128, 2020.

X. B. Jin, N. X. Yang, X. Y. Wang, Y. T. Bai, T. L. Su, and J. L. Kong, “Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model,” Sensors, vol. 20, p. 1334, 2020.

H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, M. Abu-AlShaeer, “Power Reduction with Sleep/Wake on Redundant Data (SWORD) in a Wireless Sensor Network for Energy-Efficient Precision Agriculture,” Sensors, vol. 18, p. 3450, 2018.

P. Rekha, K. Sumathi, S. Samyuktha, A. Saranya, G. Tharunya, and R. Prabha, “Sensor based waste water monitoring for agriculture using IoT,” in Proc. 6th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Mar. 2020, pp. 436–439.

I. Potamitis, I. Rigakis, N.-A. Tatlas, S. Potirakis, “In-Vivo Vibroacoustic Surveillance of Trees in the Context of the IoT,” Sensors, vol. 19, p. 1366, 2019.

Q. Cao, Y. Miao, J. Shen, F. Yuan, S. Cheng, Z. Cui, “Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis ofWinter Wheat Nitrogen Status,” Agronomy, vol. 8, p. 201 2018.

J. Backman, R. Linkolehto, M. Koistinen, J. Nikander, A. Ronkainen, J. Kaivosoja, P. Suomi, L. Pesonen, “Cropinfra research data collection platform for ISO 11783 compatible and retrofit farm equipment,” Comput. Electron. Agric., vol. 166, p. 105008, 2019.

Y. E. M. Hamouda and C. Phillips, “Optimally heterogeneous irrigation for precision agriculture using wireless sensor networks,” Arabian J. Sci. Eng., vol. 44, no. 4, pp. 3183–3195, 2019, doi: 10.1007/s13369-018- 3449-y.

L. Burton, N. Dave, R. E. Fernandez, K. Jayachandran, and S. Bhansali, “Smart Gardening IoT Soil Sheets for Real-Time Nutrient Analysis,” J. Electrochem. Soc., vol. 165, pp. B3157–B3162, 2018.

M. Prisma, A. A. Shofa, S. P. Gunawan, P. Vigneshwaran, “IoT-based weather station with air quality measurement using ESP32 for environmental aerial condition study,” TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 19, no. 4, pp. 1316-1325, 2021.

Y. Syafarinda, F. Akhadin, Z. E. Fitri, B. Widiawan, and E. Rosdiana, “The Precision Agriculture Based on Wireless Sensor Network with MQTT Protocol,” IOP Conf. Ser. Earth Environ. Sci., vol. 207, p. 012059, 2018.

M. Erazo-Rodas, M. Sandoval-Moreno, S. Muñoz-Romero, M. Huerta, D. Rivas-Lalaleo, C. Naranjo, J. Rojo-Álvarez, “Multiparametric Monitoring in Equatorian Tomato Greenhouses (I): Wireless Sensor Network Benchmarking,” Sensors, vol. 18, p. 2555, 2018.

Z. Hu, L. Xu, L. Cao, S. Liu, Z. Luo, J.Wang, X. Li, and L.Wang, “Application of non-orthogonal multiple access in wireless sensor networks for smart agriculture,” IEEE Access, vol. 7, pp. 87582–87592, 2019, doi: 10.1109/ACCESS.2019.2924917.

O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. H. D. N. Hindia, “An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges,” IEEE Internet Things J., vol. 5, no. 5, pp. 3758–3773, Oct. 2018, doi: 10.1109/JIOT.2018.2844296.

W. Liao, D. Ochoa, L. Gao, B. Zhang, and W. Philips, “Morphological analysis for banana disease detection in close range hyperspectral remote sensing images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul./Aug. 2019, pp. 3697–3700.

L. Touseau and N. Sommer, “Contribution of the Web of Things and of the Opportunistic Computing to the Smart Agriculture: A Practical Experiment,” Futur. Internet, vol. 11, no. 2, p. 33, 2019.

C. Dupont, M. Vecchio, C. Pham, B. Diop, C. Dupont, S. Ko, “An Open IoT Platform to Promote Eco-Sustainable Innovation in Western Africa: Real Urban and Rural Testbeds,” Wirel. Commun. Mob. Comput., vol. 2018, p. 1028578, 2018.

H. Im, S. Lee, M. Naqi, C. Lee, S. Kim, “Flexible PI-Based Plant Drought Stress Sensor for Real-Time Monitoring System in Smart Farm,” Electronics, vol. 7, p. 114, 2018.

N. Zhu, X. Liu, X. Liu, K. Hu, Y. Wang, J. Tan, M. Huang, Q. Zhu, X. Ji, Y. Jiang, and Y. Guo, “Deep learning for smart agriculture: Concepts, tools, applications, and opportunities,” Int. J. Agricult. Biol. Eng., vol. 11, no. 4, pp. 32–44, 2018, doi: 10.25165/j.ijabe.20181104.4475.

Y. Nikoloudakis, S. Panagiotakis, T. Manios, E. Markakis, Pallis, “E. Composting as a Service: A Real-World IoT Implementation,” Futur. Internet, vol. 10, p. 107, 2018.

E. Boonchieng, O. Chieochan, and A. Saokaew, “Smart Farm: Applying the Use of NodeMCU, IOT, NETPIE and LINE API for a Lingzhi Mushroom Farm in Thailand,” IEICE Trans. Commun., vol. 101, no. 1, pp. 16–23, 2018.

R. Bhimanpallewar and M. Rama Narasingarao, “A prototype model for continuous agriculture field monitoring and assessment,” Int. J. Eng. Technol., vol. 7, p. 179, 2018.

D. Thakur, Y. Kumar, S. Vijendra, “Smart Irrigation and Intrusions Detection in Agricultural Fields Using IoT,” Procedia Comput. Sci., vol. 167, pp. 154–162, 2020.

L. Kamelia, M. A. Ramdhani, A. Faroqi, and V. Rifadiapriyana, “Implementation of Automation System for Humidity Monitoring and Irrigation System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, p. 012092, 2018.

A. H. Ali, R. F. Chisab, and M. J. Mnati, “A smart monitoring and controlling for agricultural pumps using LoRa IOT technology,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, pp. 286–292, 2019.

J. Przybyło and M. Jabłoński, “Using deep convolutional neural network for oak acorn viability recognition based on color images of their sections,” Comput. Electron. Agricult., vol. 156, pp. 490–499, Jan. 2019.

A. Thorat, S. Kumari, N. D. Valakunde, “An IoT based smart solution for leaf disease detection,” Proceedings of the IEEE 2017 International Conference on Big Data, IoT and Data Science (BID), 2017, pp. 193–198.

Y.-Y. Zheng, J.-L. Kong, X.-B. Jin, X.-Y. Wang, and M. Zuo, “CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture,” Sensors, vol. 19, no. 5, p. 1058, Mar. 2019.

S. H. Alsamhi, F. Afghah, R. Sahal, A. Hawbani, M. A. A. Al-Qaness, B. Lee, and M. Guizani, “Green Internet of Things using UAVs in B5G networks: A review of applications and strategies,” Ad Hoc Netw., vol. 117, p. 102505, Jun. 2021, doi: 10.1016/j.adhoc.2021.102505.

Y. Liu, K. Akram Hassan, M. Karlsson, Z. Pang, and S. Gong, A Data-Centric Internet of Things Framework Based on Azure Cloud,” IEEE Access, vol. 7, pp. 53839–53858, 2019.

I. S. Laktionov, O. V. Vovna, Y. O. Bashkov, A. A. Zori, V. A. Lebediev, “Improved Computer-oriented Method for Processing of Measurement Information on Greenhouse Microclimate,” Int. J. Bioautomation, vol. 23, pp. 71–86, 2019.

M. Idbella, M. Iadaresta, G. Gagliarde, A. Mennella, S. Mazzoleni, G. Bonanomi, “Agrilogger: A new wireless sensor for monitoring agrometeorological data in areas lacking communication networks,” Sensors, vol. 20, p. 1589, 2020.

M. Merchant, V. Paradkar, M. Khanna, and S. Gokhale, “Mango leaf deficiency detection using digital image processing and machine learning,” in Proc. 3rd Int. Conf. Converg. Technol. (I2CT), Pune, India, Apr. 2018, pp. 1–3, doi: 10.1109/I2CT.2018.8529755.

A. Mateo-Aroca, G. García-Mateos, A. Ruiz-Canales, J. M. Molina-García-Pardo, and J. M. Molina-Martínez, “Remote Image Capture System to Improve Aerial Supervision for Precision Irrigation in Agriculture,” Water, vol. 11, p. 255, 2019.

J. Astill, R. A. Dara, E. D. G. Fraser, B. Roberts, and S. Sharif, “Smart poultry management: Smart sensors, big data, and the Internet of Things,” Comput. Electron. Agricult., vol. 170, p. 105291, Mar. 2020, doi: 10.1016/j.compag.2020.105291.

Y. Mekonnen, S. Namuduri, L. Burton, A. Sarwat, and S. Bhansali, “Review—Machine learning techniques in wireless sensor network based precision agriculture,” J. Electrochem. Soc., vol. 167, no. 3, p. 037522, 2020, doi: 10.1149/2.0222003JES.

S. S. Sheikh, A. Javed, M. Anas, F. Ahmed, “Solar Based Smart Irrigation System Using PID Controller,” IOP Conf. Ser. Mater. Sci. Eng., vol. 414, p. 012040, 2018.

X. B. Jin, N. X. Yang, X. Y. Wang, Y.T. Bai, T. L Su, and J. L. Kong, “Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model,” Sensors, vol. 20, p. 1334, 2020.

S. Kodati and S. Jeeva, “Smart Agricultural using Internet of Things, Cloud and Big Data,” Int. J. Innov. Technol. Explor. Eng., vol. 8, pp. 3718–3722, 2019.

N. Revathi and P. Sengottuvelan, “Real-Time Irrigation Scheduling Through IoT in Paddy Fields,” Int. J. Innov. Technol. Explor. Eng., vol. 8, pp. 4639–4647, 2019.

E. Symeonaki, K. Arvanitis, and D. Piromalis, “A context-aware middleware cloud approach for integrating precision farming facilities into the IoT toward agriculture 4.0,” Appl. Sci., vol. 10, no. 3, p. 813, 2020.

N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, and J. M. Guerrero, “Stochastic predictive control of multi-microgrid systems,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 5311–5319, 2019.

F. Muzafarov and A. Eshmuradov, “Wireless sensor network based monitoring system for precision agriculture in Uzbekistan,” TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 17, no. 3, pp. 1071-1080, 2019.

J. S. Gomez, D. Saez, J. W. Simpson-Porco, and R. Cardenas, “Distributed predictive control for frequency and voltage regulation in microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1319–1329, 2020, doi: 10.1109/TSG.2019.2935977.

S. Villamil, C. Hernández, and G. Tarazona, “An overview of internet of things,” TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18, no. 5, pp. 2320~2327, 2020.

U. Shafi, R. Mumtaz, J. García-Nieto, S. A. Hassan, S. A. R. Zaidi, N. Iqbal, “Precision Agriculture Techniques and Practices: From Considerations to Applications,” Sensors (Basel), vol. 19, no. 17, p. 3796, 2019, doi: 10.3390/s19173796.

W. S. Kim, W. S. Lee, and Y. J. Kim, “A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation,” J. Biosyst. Eng., vol. 45, no. 4, pp. 385–400, 2020, https://doi.org/10.1007/s42853-020-00078-3.

M. Dholu and K. A. Ghodinde, "Internet of Things (IoT) for Precision Agriculture Application," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018, pp. 339-342, doi: 10.1109/ICOEI.2018.8553720.

D. Glaroudis, A. Iossifides, and P. Chatzimisios, “Survey, comparison and research challenges of IoT application protocols for smart farm- ing,” Comput. Netw., vol. 168, p. 107037, Feb. 2020, doi: 10. 1016/j.comnet.2019.107037.

B. M. Zerihun, T. O. Olwal, and M. R. Hassen, “Design and Analysis of IoT-Based Modern Agriculture Monitoring System for Real-Time Data Collection,” Computer Vision and Machine Learning in Agriculture, vol. 2, pp. 73-82, 2022, doi: 10.1007/978-981-16-9991-7_5.

D. K. Singh, R. Sobti, A. Jain, P. K. Malik, D.‐N. Le, “LoRa based intelligent soil and weather condition monitoring with internet of things for precision agriculture in smart cities,” IET Communications, vol. 16, no. 5, pp. 604-618, 2022, doi: 10.1049/cmu2.12352.

R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” Journal of King Saud University –Computer and Information Sciences, 2021, doi: 10.1016/j.jksuci.2021.05.013.

B. Jamshidi and H. Dehghanisani, “Big IoT Data from the Perspective of Smart Agriculture,” Roshd-e-Fanavari, vol. 16, no. 63, pp. 12-22, 2020, doi: 10.52547/jstpi.20875.16.63.12.




DOI: https://doi.org/10.18196/jrc.v3i3.14159

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 WAN MOHD BUKHARI WAN DAUD

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik