Nonlinear Model Predictive Control-based Collision Avoidance for Mobile Robot
Abstract
This work proposes an efficient and safe single-layer Nonlinear Model Predictive Control (NMPC) system based on LiDAR to solve the problem of autonomous navigation in cluttered environments with previously unidentified static and dynamic obstacles of any shape. Initially, LiDAR sensor data is collected. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, is used to cluster the (Lidar) points that belong to each obstacle together. Moreover, a Minimum Euclidean Distance (MED) between the robot and each obstacle with the aid of a safety margin is utilized to implement safety-critical obstacle avoidance rather than existing methods in the literature that depend on enclosing the obstacles with a circle or minimum bounding ellipse. After that, to impose avoidance constraints with feasibility guarantees and without compromising stability, an NMPC for set-point stabilization is taken into consideration with a design strategy based on terminal inequality and equality constraints. Consequently, numerous obstacles can be avoided at the same time efficiently and rapidly through unstructured environments with narrow corridors. Finally, a case study with an omnidirectional wheeled mobile robot (OWMR) is presented to assess the proposed NMPC formulation for set-point stabilization. Furthermore, the efficacy of the proposed system is tested by experiments in simulated scenarios using a robot simulator named CoppeliaSim in combination with MATLAB which utilizes the CasADi Toolbox, and Statistics and Machine Learning Toolbox. Two simulation scenarios are considered to show the performance of the proposed framework. The first scenario considers only static obstacles while the second scenario is more challenging and contains static and dynamic obstacles. In both scenarios, the OWMR successfully reached the target pose (1.5m, 1.5m, 0°) with a small deviation. Four performance indices are utilized to evaluate the set-point stabilization performance of the proposed control framework including the steady-state error in the posture vector which is less than 0.02 meters for position and 0.012 for orientation, and the integral of norm squared actual control inputs which is 19.96 and 21.74 for the first and second scenarios respectively. The proposed control framework shows a positive performance in a narrow-cluttered environment with unknown obstacles.
Keywords
Full Text:
PDFReferences
G. Li et al., “Hybrid Maps Enhanced Localization System for Mobile Manipulator in Harsh Manufacturing Workshop,” IEEE Access, vol. 8, pp. 10782–10795, 2020, doi: 10.1109/access.2020.2965300.
P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, "Sensor planning for a symbiotic UAV and UGV system for precision agriculture," IEEE transactions on robotics, vol. 32, no. 6, pp. 1498-1511, 2016, doi: 10.1109/iros.2013.6697126.
R. Bonatti, Y. Zhang, S. Choudhury, W. Wang, and S. Scherer, “Autonomous Drone Cinematographer: Using Artistic Principles to Create Smooth, Safe, Occlusion-Free Trajectories for Aerial Filming,” Proceedings of the 2018 International Symposium on Experimental Robotics, pp. 119–129, 2020, doi: 10.1007/978-3-030-33950-0_11.
S. S. Mansouri, C. Kanellakis, D. Kominiak, and G. Nikolakopoulos, “Deploying MAVs for autonomous navigation in dark underground mine environments,” Robotics and Autonomous Systems, vol. 126, p. 103472, Apr. 2020, doi: 10.1016/j.robot.2020.103472.
A. Sahoo, S. K. Dwivedy, and P. S. Robi, “Advancements in the field of autonomous underwater vehicle,” Ocean Engineering, vol. 181, pp. 145–160, Jun. 2019, doi: 10.1016/j.oceaneng.2019.04.011.
R. C. Cardoso et al., “A Review of Verification and Validation for Space Autonomous Systems,” Current Robotics Reports, vol. 2, no. 3, pp. 273–283, Jun. 2021, doi: 10.1007/s43154-021-00058-1.
M. Z. A. Rashid, M. F. M. Yakub, S. A. Z. bin Shaikh Salim, N. Mamat, S. M. S. M. Putra, and S. A. Roslan, “Modeling of the in-pipe inspection robot: A comprehensive review,” Ocean Engineering, vol. 203, p. 107206, May 2020, doi: 10.1016/j.oceaneng.2020.107206.
W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Beha. Nonlinear Control of Wheeled Mobile Robots. Lecture Notes in Control and Information Sciences, 2001, doi: 10.1007/bfb0113116.
O. Y. Ismael, M. Qasim, M. N. Noaman, and A. Kurniawan, “Salp Swarm Algorithm-Based Nonlinear Robust Control of Magnetic Levitation System Using Feedback Linearization Approach,” Proceedings of the 3rd International Conference on Electronics, Communications and Control Engineering, pp. 58-64, Apr. 2020, doi: 10.1145/3396730.3396734.
M. N. Alghanim, M. Qasim, K. P. Valavanis, M. J. Rutherford, and M. Stefanovic, “Comparison of Controller Performance for UGV-Landing Platform Self-Leveling,” 2020 28th Mediterranean Conference on Control and Automation (MED), pp. 471-478, Sep. 2020, doi: 10.1109/med48518.2020.9182837.
O. Y. Ismael, M. Qasim, and M. N. Noaman, “Equilibrium Optimizer-Based Robust Sliding Mode Control of Magnetic Levitation System,” Journal Européen des Systèmes Automatisés, vol. 54, no. 1, pp. 131–138, Feb. 2021, doi: 10.18280/jesa.540115.
M. N. Alghanim, M. Qasim, K. P. Valavanis, M. J. Rutherford, and M. Stefanovic, “Passivity-Based Adaptive Controller for Dynamic Self-Leveling of a Custom-Built Landing Platform on Top of a UGV,” 2020 28th Mediterranean Conference on Control and Automation (MED), pp. 458-464, Sep. 2020, doi: 10.1109/med48518.2020.9182807.
Mohd. N. Zafar and J. C. Mohanta, “Methodology for Path Planning and Optimization of Mobile Robots: A Review,” Procedia Computer Science, vol. 133, pp. 141–152, 2018, doi: 10.1016/j.procs.2018.07.018.
S. A. Bonab and A. Emadi, “Optimization-based Path Planning for an Autonomous Vehicle in a Racing Track,” IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, pp. 3823-3828, Oct. 2019, doi: 10.1109/iecon.2019.8926856.
N. D. Potdar, G. C. H. E. de Croon, and J. Alonso-Mora, “Online trajectory planning and control of a MAV payload system in dynamic environments,” Autonomous Robots, vol. 44, no. 6, pp. 1065–1089, Jun. 2020, doi: 10.1007/s10514-020-09919-8.
M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey,” Robotica, vol. 33, no. 3, pp. 463–497, Mar. 2014, doi: 10.1017/s0263574714000289.
M. W. Mehrez, K. Worthmann, J. P. V. Cenerini, M. Osman, W. W. Melek, and S. Jeon, “Model Predictive Control without terminal constraints or costs for holonomic mobile robots,” Robotics and Autonomous Systems, vol. 127, p. 103468, May 2020, doi: 10.1016/j.robot.2020.103468.
F. Xie and R. Fierro, “First-state contractive model predictive control of nonholonomic mobile robots,” 2008 American Control Conference, pp. 3494-3499, Jun. 2008, doi: 10.1109/acc.2008.4587034.
T. Ding, Y. Zhang, G. Ma, Z. Cao, X. Zhao, and B. Tao, “Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint,” Mechatronics, vol. 84, p. 102779, Jun. 2022, doi: 10.1016/j.mechatronics.2022.102779.
D. Wang, W. Wei, Y. Yeboah, Y. Li, and Y. Gao, “A Robust Model Predictive Control Strategy for Trajectory Tracking of Omni-directional Mobile Robots,” Journal of Intelligent & Robotic Systems, vol. 98, no. 2, pp. 439–453, Dec. 2019, doi: 10.1007/s10846-019-01083-1.
G. C. Karras and G. K. Fourlas, “Model Predictive Fault Tolerant Control for Omni-directional Mobile Robots,” Journal of Intelligent & Robotic Systems, vol. 97, no. 3–4, pp. 635–655, May 2019, doi: 10.1007/s10846-019-01029-7.
T. P. Nascimento, C. E. T. Dórea, and L. M. G. Gonçalves, “Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots,” International Journal of Advanced Robotic Systems, vol. 15, no. 1, Jan. 2018, doi: 10.1177/1729881418760461.
X. Zhu, C. Ding, L. Jia, and Y. Feng, “Koopman operator based model predictive control for trajectory tracking of an omnidirectional mobile manipulator,” Measurement and Control, vol. 55, no. 9–10, pp. 1067–1077, Aug. 2022, doi: 10.1177/00202940221095559.
J. B. Rawlings and K. R. Muske, “The stability of constrained receding horizon control,” IEEE Transactions on Automatic Control, vol. 38, no. 10, pp. 1512–1516, 1993, doi: 10.1109/9.241565.
W. Esterhuizen, K. Worthmann, and S. Streif, “Recursive Feasibility of Continuous-Time Model Predictive Control Without Stabilising Constraints,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 265–270, Jan. 2021, doi: 10.1109/lcsys.2020.3001514.
L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Communications and Control Engineering, 2017, doi: 10.1007/978-3-319-46024-6.
S. A. Emami and A. Banazadeh, “Simultaneous trajectory tracking and aerial manipulation using a multi-stage model predictive control,” Aerospace Science and Technology, vol. 112, p. 106573, May 2021, doi: 10.1016/j.ast.2021.106573.
J. Köhler, M. A. Müller, and F. Allgöwer, “A nonlinear tracking model predictive control scheme for dynamic target signals,” Automatica, vol. 118, p. 109030, Aug. 2020, doi: 10.1016/j.automatica.2020.109030.
Z. Wang, J. Zhan, C. Duan, X. Guan, P. Lu and K. Yang, "A Review of Vehicle Detection Techniques for Intelligent Vehicles," in IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8, pp. 3811-3831, Aug. 2023, doi: 10.1109/TNNLS.2021.3128968.
O. H. Jafari, D. Mitzel, and B. Leibe, “Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras,” 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5636-5643, May 2014, doi: 10.1109/icra.2014.6907688.
T. Eppenberger, G. Cesari, M. Dymczyk, R. Siegwart, and R. Dube, “Leveraging Stereo-Camera Data for Real-Time Dynamic Obstacle Detection and Tracking,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10528-10535, Oct. 2020, doi: 10.1109/iros45743.2020.9340699.
M. Qasim and O. Y. Ismael, “Shared Control of a Robot Arm Using BCI and Computer Vision,” Journal Européen des Systèmes Automatisés, vol. 55, no. 1, pp. 139–146, Feb. 2022, doi: 10.18280/jesa.550115.
D. Kloeser, T. Schoels, T. Sartor, A. Zanelli, G. Prison, and M. Diehl, “NMPC for Racing Using a Singularity-Free Path-Parametric Model with Obstacle Avoidance,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 14324–14329, 2020, doi: 10.1016/j.ifacol.2020.12.1376.
Y. Liu et al., “Robust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor UAV under disturbances,” Robotics and Autonomous Systems, vol. 98, pp. 317–332, Dec. 2017, doi: 10.1016/j.robot.2017.08.011.
B. Hermans, P. Patrinos, and G. Pipeleers, “A Penalty Method Based Approach for Autonomous Navigation using Nonlinear Model Predictive Control,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 234–240, 2018, doi: 10.1016/j.ifacol.2018.11.019.
W. Li, C. Yang, Y. Jiang, X. Liu, and C.-Y. Su, “Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method,” Journal of Advanced Transportation, vol. 2017, pp. 1–11, 2017, doi: 10.1155/2017/4961383.
G. Klančar and I. Škrjanc, “Tracking-error model-based predictive control for mobile robots in real time,” Robotics and Autonomous Systems, vol. 55, no. 6, pp. 460–469, Jun. 2007, doi: 10.1016/j.robot.2007.01.002.
G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and L. B. Becker, “A Predictive Controller for Autonomous Vehicle Path Tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp. 92–102, Mar. 2009, doi: 10.1109/tits.2008.2011697.
J. Backman, T. Oksanen, and A. Visala, “Navigation system for agricultural machines: Nonlinear Model Predictive path tracking,” Computers and Electronics in Agriculture, vol. 82, pp. 32–43, Mar. 2012, doi: 10.1016/j.compag.2011.12.009.
D. Gu and H. Hu, “A stabilizing receding horizon regulator for nonholonomic mobile robots,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 1022–1028, Oct. 2005, doi: 10.1109/tro.2005.851357.
M. N. Noaman, M. Qasim, and O. Y. Ismael, "Landmarks exploration algorithm for mobile robot indoor localization using VISION sensor," Journal of Engineering Science & Technology, vol. 16, no. 4, pp. 3165-3184, 2021.
J. Lin, H. Zhu, and J. Alonso-Mora, “Robust Vision-based Obstacle Avoidance for Micro Aerial Vehicles in Dynamic Environments,” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2682-2688, May 2020, doi: 10.1109/icra40945.2020.9197481.
B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4459–4466, Oct. 2019, doi: 10.1109/lra.2019.2929976.
M. Parimala, D. Lopez, and N. Senthilkumar, "A survey on density based clustering algorithms for mining large spatial databases," International Journal of Advanced Science and Technology, vol. 31, no. 1, pp. 59-66, 2011.
O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” Autonomous Robot Vehicles, pp. 396–404, 1986, doi: 10.1007/978-1-4613-8997-2_29.
F. Gao, W. Wu, Y. Lin, and S. Shen, “Online Safe Trajectory Generation for Quadrotors Using Fast Marching Method and Bernstein Basis Polynomial,” 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 344-351, May 2018, doi: 10.1109/icra.2018.8462878.
D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, Mar. 1997, doi: 10.1109/100.580977.
F. Gao, Y. Lin, and S. Shen, “Gradient-based online safe trajectory generation for quadrotor flight in complex environments,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3681-3688, Sep. 2017, doi: 10.1109/iros.2017.8206214.
G. Ferrer, A. Garrell, and A. Sanfeliu, "Robot companion: A social-force based approach with human awareness-navigation in crowded environments," 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1688-1694, 2013, doi: 10.1109/IROS.2013.6696576.
B. T. Lopez and J. P. How, “Aggressive 3-D collision avoidance for high-speed navigation,” 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5759-5765, May 2017, doi: 10.1109/icra.2017.7989677.
A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion planning,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 947–982, Jun. 2017, doi: 10.1177/0278364917712421.
L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-Based Model Predictive Control: Toward Safe Learning in Control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 269–296, May 2020, doi: 10.1146/annurev-control-090419-075625.
J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, "Data-Driven Model Predictive Control With Stability and Robustness Guarantees," in IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1702-1717, April 2021, doi: 10.1109/TAC.2020.3000182.
R. Carli, G. Cavone, N. Epicoco, P. Scarabaggio, and M. Dotoli, "Model predictive control to mitigate the COVID-19 outbreak in a multi-region scenario," Annual Reviews in Control, vol. 50, pp. 373-393, 2020, https://doi.org/10.1016/j.arcontrol.2020.09.005.
J. Zeng, B. Zhang, and K. Sreenath, “Safety-Critical Model Predictive Control with Discrete-Time Control Barrier Function,” 2021 American Control Conference (ACC), pp. 3882-3889, May 2021, doi: 10.23919/acc50511.2021.9483029.
Z. Jian et al., “Dynamic Control Barrier Function-based Model Predictive Control to Safety-Critical Obstacle-Avoidance of Mobile Robot,” 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3679-3685, May 2023, doi: 10.1109/icra48891.2023.10160857.
J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, Jul. 2018, doi: 10.1007/s12532-018-0139-4.
A. Wächter and L. T. Biegler, “Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 1–31, Jan. 2005, doi: 10.1137/s1052623403426556.
J. C. L. Barreto S., A. G. S. Conceicao, C. E. T. Dorea, L. Martinez, and E. R. de Pieri, “Design and Implementation of Model-Predictive Control With Friction Compensation on an Omnidirectional Mobile Robot,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 467–476, Apr. 2014, doi: 10.1109/tmech.2013.2243161.
R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to autonomous mobile robots. MIT press, 2011.
W. B. Dunbar and R. M. Murray, “Model predictive control of coordinated multi-vehicle formations,” Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 4631-4636, 2002, doi: 10.1109/cdc.2002.1185108.
D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, Jun. 2000, doi: 10.1016/s0005-1098(99)00214-9.
J. Santos, A. G. S. Conceição, and T. L. M. Santos, “Trajectory tracking of Omni-directional Mobile Robots via Predictive Control plus a Filtered Smith Predictor,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10250–10255, Jul. 2017, doi: 10.1016/j.ifacol.2017.08.1286.
J. Cenerini, M. W. Mehrez, J. Han, S. Jeon, and W. Melek, “Model Predictive Path Following Control without terminal constraints for holonomic mobile robots,” Control Engineering Practice, vol. 132, p. 105406, Mar. 2023, doi: 10.1016/j.conengprac.2022.105406.
H.-S. Kang, Y.-T. Kim, C.-H. Hyun, and M. Park, “Generalized Extended State Observer Approach to Robust Tracking Control for Wheeled Mobile Robot with Skidding and Slipping,” International Journal of Advanced Robotic Systems, vol. 10, no. 3, p. 155, Jan. 2013, doi: 10.5772/55738.
M. Fnadi, F. Plumet, and F. Benamar, “Nonlinear Tire Cornering Stiffness Observer for a Double Steering Off-Road Mobile Robot,” 2019 International Conference on Robotics and Automation (ICRA), pp. 7529-7534, May 2019, doi: 10.1109/icra.2019.8794047.
M. Cui, R. Huang, H. Liu, X. Liu, and D. Sun, “Adaptive tracking control of wheeled mobile robots with unknown longitudinal and lateral slipping parameters,” Nonlinear Dynamics, vol. 78, no. 3, pp. 1811–1826, Jul. 2014, doi: 10.1007/s11071-014-1549-0.
DOI: https://doi.org/10.18196/jrc.v5i1.20615
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Omar Y. Ismael, Mohammed Almaged, Abdulla Ibrahim Abdulla
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com