Sliding Mode Control based on Neural State and Disturbance Observers: Application to a Unicycle Robot Using ROS2
Abstract
The major problem dealing with mobile robots is the trajectory tracking control problem, in the presence of random disturbance and unmeasurable angular velocity. In this paper, we propose a Sliding Mode Control (SMC) based on a Nonlinear Disturbance Observer (NDO) and a Neural State Observer (NSO). The (SMC-NDO) controller displays limitations in mitigating external disturbances. Therefore, this research contribution suggests a novel approach that integrates a Neural State Observer (NSO) into the (SMC-NDO) controller, to significantly enhance the performance of a control system. The combined approach improves disturbance reduction while simultaneously estimating the unmeasurable angular velocity, ultimately leading to more accurate path tracking. Furthermore, the Lyapunov method is used to ensure the stability of the closed-loop control on the one hand, and the stability of the Neural State Observer based on the Backpropagation algorithm on the other hand. Numerical simulations and the implementation of the Simulator in ROS/Gazebo demonstrate better performance of our proposed approach (SMC-NSONDO) compared to the Sliding Mode control-based Disturbance Observer (SMC-NDO) and the Sliding Mode Control (SMC). The control proposal in this work is ready for use on most ROScompatible robots. This experiment should offer an enlightening perspective to robotics researchers.
Keywords
Full Text:
PDFReferences
A. T. Hassan, L. A. H. Al-Kindi and A. B. Abdulghafour, ““Industrie 4.0” and Smart Manufacturing: A State of the Art Review,” 2023 15th International Conference on Developments in eSystems Engineering (DeSE), pp. 1-6, 2023, doi: 10.1109/DeSE58274.2023.10100115.
A. Bonci, F. Gaudeni, M. C. Giannini, and S. Longhi, “Robot Operating System 2 (ROS2)-Based Frameworks for Increasing Robot Autonomy: A Survey,” applied sciences, vol. 13, no. 23, 2023, doi: 10.3390/app132312796.
J. Rossmann, “eRobotics Meets the Internet of Things: Modern Tools for Today’s Challenges in Robotics and Automation,” 2015 International Conference on Developments of E-Systems Engineering (DeSE), pp. 318- 323, 2015, doi: 10.1109/DeSE.2015.33.
A. Luxenburger et al., “Augmented Reality for Human-Robot Cooperation in Aircraft Assembly,” 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 263-2633, 2019, doi: 10.1109/AIVR46125.2019.00061.
A. T. Azar et al., “Design and Stability Analysis of Sliding Mode Controller for Non-Holonomic Differential Drive Mobile Robots,” machines, vol. 11, no. 4, 2023, doi: 10.3390/machines11040470.
A. Giallanza, G. L. Scalia, R. Micale, and C. M. L. Fata, “Occupational health and safety issues in human-robot collaboration: State of the art and open challenges,” Safety Science, vol. 169, 2024, doi: 10.1016/j.ssci.2023.106313.
A. P. Moreira, P. Neto, and F. Vidal, “Special Issue on Advances in Industrial Robotics and Intelligent Systems,” applied sciences, vol. 13, no. 3, 2023, doi: 10.3390/app13031352.
A. Latif, K. Shankar, and P. T. Nguyen, and Control, “Legged fire fighter robot movement using PID,” Journal of Robotic and Control, vol. 1, no. 1, pp. 15-18, 2020, doi: 10.18196/jrc.1104.
A. Giallanza, G. L. Scalia, R. Micale, and C. M. L. Fata, “Occupational health and safety issues in human-robot collaboration: State of the art and open challenges,” Safety Science, vol. 169, 2024, doi: 10.1016/j.ssci.2023.106313.
A. bin Kamarulariffin, A. bin Mohd Ibrahim, and A. Bahamid, “Improving Deep Reinforcement Learning Training Convergence using Fuzzy Logic for Autonomous Mobile Robot Navigation,” International Journal of Advance Computer Sciences and Applications, vol. 14, no. 11, pp. 935- 942, 2023, doi: 10.14569/ijacsa.2023.0141195.
B. Nawress, A. N. G. Lakhal and N. B. Braiek, “Intelligent police robot uses VSLAM for Dynamic Environment based on Object Detection and Face Recognition,” 2023 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1-6, 2023, doi: 10.1109/ICCAD57653.2023.10152436.
B. Liu, X. Yang, and J. J. Zhang, “Nonlinear effect of industrial robot applications on carbon emissions: Evidence from China,” Environmental Impact Assessment Review, vol. 104, 2024, doi: 10.1016/j.eiar.2023.107297.
B. B. Mevo, “Contribution a la commande adaptive et robuste d’un robot ` mobile de type unicycle avec modele non-lin ` eaire,” ´ Universite du Qu ´ ebec ´ en Abitibi-Temiscamingue ´, 2019.
B. Udugama, “Mini bot 3D: A ROS based Gazebo Simulation,” arXiv preprint arXiv:2302.06368, 2023, doi: 10.48550/arXiv.2302.06368.
M. Chen, and W. H. Chen, “Sliding mode control for a class of uncertain nonlinear system based on disturbance observer,” Adaptive Control and Signal Processing, vol. 24, no. 1, pp. 51-64, 2010, doi: 10.1002/acs.1110.
C. J. R. Chaka and P. i. T. E. Learning, “Fourth industrial revolution—a review of applications, prospects, and challenges for artificial intelligence, robotics and blockchain in higher education,” Research and Practice in Technology Enhanced Learning, vol. 18, 2023, doi 10.58459/rptel.2023.18002.
C. C. Soon et al., “Chattering Analysis of an Optimized Sliding Mode Controller for an Electro-Hydraulic Actuator System,” Journal of Robotics and Control, vol. 3, no. 2, pp. 160-165, 2022, doi: 10.18196/jrc.v3i2.13671.
D. Marfuah, N. K. Ulya, D. P. D. Kusudaryati, A. S. Wardana, and E. Nugroho, “Current Trends in Intelligent Control Neural Networks for Thermal Processing (Foods): Systematic Literature Review,” Journal of Robotics and Control, vol. 3, no. 4, pp. 519-527, 2022, doi: 10.18196/jrc.v3i4.15232.
T. Ye, Z. Luo, and G. Wang, “Adaptive sliding mode control of robot based on fuzzy neural network,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 12, pp. 6235-6247, 2020, doi: 10.1007/s12652-020-01809-2.
D. T. Tran, N. M. Hoang, N. H. Loc, Q. T. Truong, and N. T. Nha, “A Fuzzy LQR PID Control for a Two-Legged Wheel Robot with Uncertainties and Variant Height,” Journal of Robotics and Control, vol. 4, no. 5, pp. 612-620, 2023, doi: 10.18196/jrc.v4i5.19448.
D. Huang, C. Yang, Z. Ju, and S. L. Dai, “Disturbance observer enhanced variable gain controller for robot teleoperation with motion capture using wearable armbands,” Autonomous Robots, vol. 44, pp. 1217-1231, 2020, doi: 10.1007/s10514-020-09928-7.
F. Hariz, Y. Bouslimani and M. Ghribi, “High-Resolution Mobile Mapping Platform Using 15-mm Accuracy LiDAR and SPAN/TerraStar C-PRO Technologies,” in IEEE Journal on Miniaturization for Air and Space Systems, vol. 4, no. 2, pp. 122-135, 2023, doi: 10.1109/JMASS.2023.3240892.
X. Feng, and C. Wang, “Adaptive neural network tracking control of an omnidirectional mobile robot,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 237, no. 3, pp. 375-387, 2023, doi: 10.1177/09596518221135904.
F. Zhang et al., “Universal nonlinear disturbance observer for robotic manipulators,” International Journal of Advance Robotic Systems, vol. 20, no. 2, 2023, doi: 10.1177/17298806231167669.
F. Sherwani, M. M. Asad and B. S. K. K. Ibrahim, “Collaborative Robots and Industrial Revolution 4.0 (IR 4.0),” 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), pp. 1-5, 2020, doi: 10.1109/ICETST49965.2020.9080724.
F. Ore, J. L. J. Sanchez, M. Wiktorsson, and L. Hanson, “Design method ´ of human–industrial robot collaborative workstation with industrial application,” International Journal of Computer Integrated Manufacturing, vol. 33, no. 9, pp. 911-924, 2020, doi: 10.1080/0951192X.2020.1815844.
H. Wang, C. Liu, Q. Zhang, and L. Wang, “Efficient Nonlinear Model Predictive and Active Disturbance Rejection Control for Trajectory Tracking of Unmanned Vehicles,” Research Square, 2024, doi: 10.21203/rs.3.rs3858747/v1.
H. Kagermann and W. Wahlster, “Ten years of Industrie 4.0,” sci, vol. 4, no. 3, 2022, doi: 10.3390/sci4030026.
Y. Hu, H. Yan, H. Zhang, M. Wang and L. Zeng, “Robust Adaptive Fixed-Time Sliding-Mode Control for Uncertain Robotic Systems With Input Saturation,” in IEEE Transactions on Cybernetics, vol. 53, no. 4, pp. 2636-2646, 2023, doi: 10.1109/TCYB.2022.3164739.
H. -W. Chae, J. -H. Choi and J. -B. Song, “Robust and Autonomous Stereo Visual-Inertial Navigation for Non-Holonomic Mobile Robots,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 9613- 9623, 2020, doi: 10.1109/TVT.2020.3004163.
H. N. Huynh, H. Assadi, E. R. Lorphevre, O. Verlinden, and K. Ahmadi, ` “Modelling the dynamics of industrial robots for milling operations,” Robotics and Computer-Integrated Manufacturing, vol. 61, 2020, doi: 10.1016/j.rcim.2019.101852.
A. A. Housein, G. Xingyu, W. Li, and Y. Huang, “Extended Kalman filter sensor fusion in practice for mobile robot localization,” The Science and Information Organization, vol. 13, no. 2, 2022, doi: 10.14569/IJACSA.2022.0130204.
H. M. Alshanbari, H. Iftikhar, F. Khan, M. Rind, Z. Ahmad, and A. Al. A. H. E. Bagoury, “On the Implementation of the Artificial Neural Network Approach for Forecasting Different Healthcare Events,” diagnostics, vol. 13, no. 7, pp. 1-17, 2023, doi: 10.3390/diagnostics13071310.
I. Reguii, I. Hassani, and C. Rekik, “Mobile Robot Navigation Using Planning Algorithm and Sliding Mode Control in a Cluttered Environment,” Journal of Robotics and Control, vol. 3, no. 2, pp. 166-175, 2022, doi: 10.18196/jrc.v3i2.13765.
J. Hazik, M. Dekan, P. Beno, and F. Duchon, “Fleet Management System for an Industry Environment,” Journal of Robotic and Control, vol. 3, no. 6, pp. 779-789, 2022, doi: 10.18196/jrc.v3i6.16298.
J. Cornejo et al., “Industrial, collaborative and mobile robotics in Latin America: Review of mechatronic technologies for advanced automation,” Emerging Science Journal, vol. 7, no. 4, pp. 1430-1458, 2023, doi: 10.28991/ESJ-2023-07-04-025.
J. Wang, H. Dong, F. Chen, M. T. Vu, A. D. Shakibjoo, and A. Mohammadzadeh, “Formation Control of Non-Holonomic Mobile Robots: Predictive Data-Driven Fuzzy Compensator,” mathematics, vol. 11, no. 8, 2023, doi: 10.3390/math11081804.
J. D. Tellez, R. S. G. Ram ´ ´ırez, J. P. Perez, J. E. Carre ´ on, M. A. ´ C. Rosales, “ROS-based Controller for a Two-Wheeled Self-Balancing Robot,” Journal of Robotics and Control, vol. 4, no. 4, pp. 491-499, 2023, doi: 10.18196/jrc.v4i4.18208.
J. Gil, S. You, Y. Lee, and W. Kim, “Nonlinear sliding mode controller using disturbance observer for permanent magnet synchronous motors under disturbance,” Expert Systems with Applications, vol. 214, 2023, doi: 10.1016/j.eswa.2022.119085.
J. Arents and M. Greitans, “Smart industrial robot control trends, challenges and opportunities within manufacturing,” applied sciences, vol. 12, no. 2, 2022, doi: 10.3390/app12020937.
Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” Proceedings., IEEE International Conference on Robotics and Automation, pp. 384-389 vol. 1, 1990, doi: 10.1109/ROBOT.1990.126006.
K. Liu, H. Ji, and Y. Zhang, “Extended state observer based adaptive sliding mode tracking control of wheeled mobile robot with input saturation and uncertainties,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, no. 15, pp. 5460-5476, 2019, doi: 10.1177/0954406219849445.
K. Niquet, N. Patel, F. Schrodel, M. Jahn and S. Varelmann, “Prototype ¨ of an intelligent textile based robot skin to expand potential applications for cobot’s,” 2023 8th International Conference on Mechanical Engineering and Robotics Research (ICMERR), pp. 12-17, 2023, doi: 10.1109/ICMERR59784.2023.10379882.
K. P. Venkatesh, G. Brito, and M. N. K. Boulos, “Health digital twins in life science and health care innovation,” Annual Review of Pharmacology and Toxicology, vol. 64, pp. 159-170, 2024, doi: 10.1146/annurevpharmtox-022123-022046.
S. Khesrani, A. Hassam, O. Boutalbi, and M. Boubezoula, “Motion planning and control of nonholonomic mobile robot using flatness and fuzzy logic concepts,” International Journal of Dynamics and Control, vol. 9, no. 4, pp. 1660-1671, 2021, doi: 10.1007/s40435-020-00754-4.
K. M. Saipullah, W. H. M. Saad, S. H. Chong, M. I. Idris, S. A. Radzi, “ROS 2 Configuration for Delta Robot Arm Kinematic Motion and Stereo Camera Visualization,” Journal of Robotics and Control, vol. 3, no. 3, pp. 320-327, 2022, doi: 10.18196/jrc.v3i3.14436.
M. Zhitenko and M. Polyakov, “Development of a Robot Arm with Neural Network Control,” 2023 3rd International Conference on Technology Enhanced Learning in Higher Education (TELE), pp. 23-27, 2023, doi: 10.1109/TELE58910.2023.10184332.
M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, machine learning and deep learning in advanced robotics, a review,” Cognitive Robotics, vol. 3, pp. 54–70, 2023, doi: 10.1016/J.Cogr.2023.04.001.
M. Schulze, F. Graaf, L. Steffen, A. Roennau and R. Dillmann, “A Trajectory Planner For Mobile Robots Steering Non-Holonomic Wheelchairs In Dynamic Environments,” 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3642-3648, 2023, doi: 10.1109/ICRA48891.2023.10161082.
M. Mera, H. R´ıos, and E. A. Mart´ınez, “A sliding-mode based controller for trajectory tracking of perturbed unicycle mobile robots,” Control Engineering Practice, vol. 102, 2020, doi: 10.1016/j.conengprac.2020.104548.
N. M. Alyazidi, A. M. Hassanine, M. S. Mahmoud, and A. Ma’arif, “Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization,” Journal of Robotics and Control, vol. 5, no. 1, pp. 253-262, 2024, doi: 10.18196/jrc.v5i1.18746.
M. Choi et al., “MSC-RAD4R: ROS-Based Automotive Dataset With 4D Radar,” in IEEE Robotics and Automation Letters, vol. 8, no. 11, pp. 7194-7201, 2023, doi: 10.1109/LRA.2023.3307005.
R. Nabil, Z. Mokhtar, C. Soufyane, “Hybrid Approach to implement adaptive Neuro-Fuzzy Inference system for Trajectory Tracking navigation control of a wheeled mobile robot,” Przeglad Elektrotechniczny, vol. 2023, no. 12, 2023, doi: 10.15199/48.2023.12.21.
J. S. J. C. C. Amorim, J. H. O. Fernandes, M. S. Machado, A. L. C. Canella and M. F. Pinto, “Design of a Control Approach to Assist the Performance of a Competitive Line Follower Robot,” 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE), pp. 354-359, 2022, doi: 10.1109/LARS/SBR/WRE56824.2022.9996051.
O. Y. Ismael, M. Almaged, and A. I. Abdulla, “Nonlinear Model Predictive Control-based Collision Avoidance for Mobile Robot,” Journal of Robotic and Control, vol. 5, no. 1, pp. 142-151, 2024, doi: 10.18196/jrc.v5i1.20615.
R. Fareh, S. Khadraoui, M. Y. Abdallah, M. Baziyad, and M. Bettayeb, “Active disturbance rejection control for robotic systems: A review,” Mechatronics, vol. 80, 2021, doi: 10.1016/j.mechatronics.2021.102671.
O. K. Nicesio, A. G. Leal and V. L. Gava, “Quantum Machine Learning for Network Intrusion Detection Systems, a Systematic Literature Review,” 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), pp. 1-6, 2023, doi: 10.1109/ICAIC57335.2023.10044125.
R. S. Pol et al., “Autonomous Differential Drive Mobile Robot Navigation with SLAM, AMCL using ROS,” International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 5s, pp. 46-53, 2024.
R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, pp. 818-827, 2021, doi: 10.1007/s40435- 020-00665-4.
R. D. Xi et al., “Design and implementation of an adaptive neural network observer–based backstepping sliding mode controller for robot manipulators,” Transactions of the Institute of Measurement and Control, vol. 46, no. 6, 2023, doi: 10.1177/01423312231190169.
R. Sekhar, P. Shah, and I. Iswanto, “Robotics in industry 4.0: A bibliometric analysis (2011-2022),” Journal of Robotic and Control, vol. 3, no. 5, pp. 583-613, 2022, doi: 10.18196/jrc.v3i5.15453.
R. Farkh, and K. Aljaloud, “Vision navigation based PID control for line tracking robot,” Intelligent Automation & Soft Computing, vol. 35, no. 1, pp. 901-911, 2023, doi: 10.32604/iasc.2023.027614.
S. H. T. Pham, C. D. Nguyen, K. D. Giap, and N. T. T. Vu, “Tracking controller for uncertain wheel mobile robot: adaptive sliding mode control approach,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 6, pp. 3345-3353, 2023, doi: 10.11591/eei.v12i6.5586.
S. Mutawe, M. Hayajneh and S. BaniHani, “Robust Path Following Controllers for Quadrotor and Ground Robot,” 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1-6, 2021, doi: 10.1109/ICECCE52056.2021.9514140.
S. Y. Bhuran and G. Phadke, “Movement Control of Amphibious Robot Pid Tuning Using Partial Swarm Optimization,” Available at SSRN 4699805, 2024, doi: 10.2139/ssrn.4699805.
S. Wang, “Comparative research on path planning algorithms for autonomous mobile robots based on ROS,” in International Conference on Algorithm, Imaging Processing, and Machine Vision (AIPMV 2023), vol. 12969, pp. 219-224, 2024, doi: 10.1117/12.3014664.
S. Panagou, W. P. Neumann, and F. Fruggiero, “A scoping review of human robot interaction research towards Industry 5.0 human-centric workplaces,” International Journal of Production Research, vol. 62, no. 3, pp. 974-990, 2024, doi: 10.1080/00207543.2023.2172473.
S. Li, H. -T. Nguyen and C. C. Cheah, “A Theoretical Framework for End-to-End Learning of Deep Neural Networks With Applications to Robotics,” in IEEE Access, vol. 11, pp. 21992-22006, 2023, doi: 10.1109/ACCESS.2023.3249280.
S. Jestl, “Industrial robots, and information and communication technology: The employment effects in EU labour markets,” Regional Studies, pp. 1-18, 2024, doi: 10.1080/00343404.2023.2292259.
S. Mustary, M. A. Kashem, M. A. Chowdhury, and M. M. Rana, “Mathematical model and evaluation of dynamic stability of industrial robot manipulator: Universal robot,” Systems and Soft Computing, vol. 6, 2024, doi: 10.1016/j.sasc.2023.200071.
T. Ravichandran and F. Karray, “Knowledge based approach for online self-tuning of PID-control,” Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), vol.4, pp. 2846-2851, 2001, doi: 10.1109/ACC.2001.946328.
T. T. Mac, B. Q. Dat, and T. N. Sy, “A novel hedge algebra formation control for mobile robots,” Robotics and Autonomous Systems, vol. 172, 2024, doi: 10.1016/j.robot.2023.104607.
V. B. V. Nghia, T. Van Thien, N. N. Son, and M. T. Long, “Adaptive neural sliding mode control for two wheel self balancing robot,” International Journal of Dynamics and Control, International Journal of Dynamics and Control, vol. 10, no. 3, pp. 771-784, 2022, doi: 10.1007/s40435-021- 00832-1.
W. Xue, B. Zhou, F. Chen, H. Taghavifar, A. Mohammadzadeh and E. Ghaderpour, “A Constrained Fuzzy Control for Robotic Systems,” in IEEE Access, vol. 12, pp. 7298-7309, 2024, doi: 10.1109/ACCESS.2024.3352129.
X. Wang, D. Ding, X. Ge, and Q. L. Han, “Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case,” International Journal of Robust and Nonlinear Control, vol. 32, no. 5, pp. 2760-2779, 2022, doi: 10.1002/rnc.5831.
W. R. Abdul-Adheem, and I. K. Ibraheem, “Improved sliding mode nonlinear extended state observer based active disturbance rejection control for uncertain systems with unknown total disturbance,” International Journal of Advanced Computer Science and Applications(ijacsa), vol. 7, no. 12, 2016, doi: 10.14569/IJACSA.2016.071211.
Y. Zhang, Y. Wu, K. Tong, H. Chen, and Y. Yuan, “Review of Visual Simultaneous Localization and Mapping Based on Deep Learning,” remote sensing, vol. 15, no. 11, 2023, doi: 10.3390/rs15112740.
Y. Yang, Y. Cai, Y. Jung Yoon, H. Zhao, and S. K. Gupta, “Sensor-Based Planning and Control for Conformal Deposition on a Deformable Surface Using an Articulated Industrial Robot,” Journal of Manufacturing Science and Engineering, vol. 146, no. 1, 2024, doi: 10.1115/1.4063560.
S. Yu, J. Lu, G. Zhu, and S. Yang, “Event-triggered finitetime tracking control of underactuated MSVs based on neural network disturbance observer,” Ocean Engineering, vol. 253, 2022, doi: 10.1016/j.oceaneng.2022.111169.
Y. Hu, B. Li, B. Jiang, J. Han, and C. Y. Wen, “Disturbance ObserverBased Model Predictive Control for an Unmanned Underwater Vehicle,” control and systems engineering, vol. 12, no. 1, 2024, doi: 10.3390/jmse12010094.
J. Zhai, H. Wang, J. J. N. C. Tao, and Applications, “Disturbanceobserver-based adaptive dynamic surface control for nonlinear systems with input dead-zone and delay using neural networks,” Neural Computing and Applications, vol. 35, no. 5, pp. 4027-4049, 2023, doi: 10.1007/s00521-022-07865-3.
Z. Li, S. Li and X. Luo, “An overview of calibration technology of industrial robots,” in IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 23-36, 2021, doi: 10.1109/JAS.2020.1003381.
Z. Chen et al., “An Overview of In Vitro Biological Neural Networks for Robot Intelligence,” Cyborg and Bionic Systems, vol. 4, 2023, doi: 10.34133/cbsystems.0001.
Z. Liu, K. Peng, L. Han, and S. Guan, “Modeling and control of robotic manipulators based on artificial neural networks: a review,” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 47, pp. 1307–1347, 2023, doi: 10.1007/s40997-023-00596-3.
DOI: https://doi.org/10.18196/jrc.v5i4.21650
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nawress Barhoumi, Asma Najet Lakhal Gharbi, Naceur Benhadj Braiek
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com