Optimizing Parameters for Earthquake Prediction Using Bi-LSTM and Grey Wolf Optimization on Seismic Data
Abstract
Keywords
Full Text:
PDFReferences
O. Nicolis, F. Plaza, and R. Salas, “Prediction of intensity and location of seismic events using deep learning,” Spatial Statistics, vol. 42, 2021, doi: 10.1016/j.spasta.2020.100442.
L. B. Elvas, B. M. Mataloto, A. L. Martins, and J. C. Ferreira, “Disaster management in smart cities,” Smart Cities, vol. 4, no. 2, pp. 819–839, 2021, doi: 10.3390/smartcities4020042.
D. N. Ford and C. M. Wolf, “Smart Cities with Digital Twin Systems for Disaster Management,” Journal of Management in Engineering, vol. 36, no. 4, pp. 1–10, 2020, doi: 10.1061/(asce)me.1943-5479.0000779.
A. Berhich, F. Z. Belouadha, and M. I. Kabbaj, “An attention-based LSTM network for large earthquake prediction,” Soil Dynamics and Earthquake Engineering, vol. 165, 2022, p. 107663, 2023, doi: 10.1016/j.soildyn.2022.107663.
S. M. Mousavi and G. C. Beroza, “Machine Learning in Earthquake Seismology,” Annual Review of Earth and Planetary Sciences, vol. 51, pp. 105–129, 2023, doi: 10.1146/annurev-earth-071822-100323.
K. M. Asim, A. Idris, T. Iqbal, and F. Martínez-Álvarez, “Seismic indicators based earthquake predictor system using Genetic Programming and AdaBoost classification,” Soil Dynamics and Earthquake Engineering, vol. 111, pp. 1–7, 2018, doi: 10.1016/j.soildyn.2018.04.020.
M. Moustra, M. Avraamides, and C. Christodoulou, “Artificial neural networks for earthquake prediction using time series magnitude data or Seismic Electric Signals,” Expert Systems with Applications, vol. 38, no. 12, pp. 15032–15039, 2011, doi: 10.1016/j.eswa.2011.05.043.
G. F. Shidik et al., “LUTanh Activation Function to Optimize BI-LSTM in Earthquake Forecasting,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 1, pp. 572–583, 2024, doi: 10.22266/ijies2024.0229.48.
B. Dey, P. Dikshit, S. Sehgal, V. Trehan, and V. Kumar Sehgal, “Intelligent solutions for earthquake data analysis and prediction for future smart cities,” Computers and Industrial Engineering, vol. 170, 2022, doi: 10.1016/j.cie.2022.108368.
Z. Qadir, F. Ullah, H. S. Munawar, and F. Al-Turjman, “Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review,” Computer Communications, vol. 168, pp. 114–135, 2021, doi: 10.1016/j.comcom.2021.01.003.
K. Sharma, D. Anand, M. Sabharwal, P. K. Tiwari, O. Cheikhrouhou, and T. Frikha, “A Disaster Management Framework Using Internet of Things-Based Interconnected Devices,” Mathematical Problems in Engineering, vol. 2021, 2021, doi: 10.1155/2021/9916440.
G. C. Beroza, M. Segou, and S. Mostafa Mousavi, “Machine learning and earthquake forecasting—next steps,” Nature Communications, vol. 12, no. 1, pp. 10–12, 2021, doi: 10.1038/s41467-021-24952-6.
V. Chernykh, A. Stepnov, and B. O. Lukyanova, “Data preprocessing for machine learning in seismology,” CEUR Workshop Proceedings, vol. 2930, pp. 119–123, 2021.
C. Ning, Y. Xie, and L. Sun, “LSTM, WaveNet, and 2D CNN for nonlinear time history prediction of seismic responses,” Engineering Structures, vol. 286, 2023, doi: 10.1016/j.engstruct.2023.116083.
J. W. Lin, “Researching significant earthquakes in Taiwan using two back-propagation neural network models,” Natural Hazards, vol. 103, no. 3, pp. 3563–3590, 2020, doi: 10.1007/s11069-020-04144-z.
Y. Essam, P. Kumar, A. N. Ahmed, M. A. Murti, and A. El-Shafie, “Exploring the reliability of different artificial intelligence techniques in predicting earthquake for Malaysia,” Soil Dynamics and Earthquake Engineering, vol. 147, 2021, doi: 10.1016/j.soildyn.2021.106826.
J. Song, J. Zhu, Y. Wang, and S. Li, “On-site alert-level earthquake early warning using machine-learning-based prediction equations,” Geophysical Journal International, vol. 231, no. 2, pp. 786–800, Jul. 2022, doi: 10.1093/gji/ggac220.
L. Izquierdo-Horna, J. Zevallos, and Y. Yepez, “An integrated approach to seismic risk assessment using random forest and hierarchical analysis: Pisco, Peru,” Heliyon, vol. 8, no. 10, p. e10926, Oct. 2022, doi: 10.1016/j.heliyon.2022.e10926.
Y. Wang, Q. Zhao, K. Qian, Z. Wang, Z. Cao, and J. Wang, “Cumulative absolute velocity prediction for earthquake early warning with deep learning,” Computer-Aided Civil and Infrastructure Engineering, vol. 39, no. 11, pp. 1724-1740, 2023, doi: 10.1111/mice.13065.
I. M. Murwantara, P. Yugopuspito, and R. Hermawan, “Comparison of machine learning performance for earthquake prediction in Indonesia using 30 years historical data,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 3, pp. 1331–1342, 2020, doi: 10.12928/TELKOMNIKA.v18i3.14756.
P. Kavianpour, M. Kavianpour, E. Jahani, and A. Ramezani, “Earthquake Magnitude Prediction using Spatia-temporal Features Learning Based on Hybrid CNN- BiLSTM Model,” in 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–6, Dec. 2021, doi: 10.1109/ICSPIS54653.2021.9729358.
G. Gürsoy, A. Varol, and A. Nasab, “Importance of Machine Learning and Deep Learning Algorithms in Earthquake Prediction: A Review,” in 2023 11th International Symposium on Digital Forensics and Security (ISDFS), pp. 1–6, May 2023, doi: 10.1109/ISDFS58141.2023.10131766.
P. Kavianpour, M. Kavianpour, and A. Ramezani, “Deep Multi-scale Dilated Convolution Neural Network with Attention Mechanism: A Novel Method for Earthquake Magnitude Classification,” in 2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–6, Dec. 2022, doi: 10.1109/ICSPIS56952.2022.10043978.
Z. Zhang and Y. Wang, “A Spatiotemporal Model for Global Earthquake Prediction Based on Convolutional LSTM,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–12, 2023, doi: 10.1109/TGRS.2023.3302316.
B. Sadhukhan, S. Chakraborty, S. Mukherjee, and R. K. Samanta, “Climatic and seismic data-driven deep learning model for earthquake magnitude prediction,” Frontiers in Earth Science, vol. 11, pp. 1–24, Feb. 2023, doi: 10.3389/feart.2023.1082832.
E. Abebe, H. Kebede, M. Kevin, and Z. Demissie, “Earthquakes magnitude prediction using deep learning for the Horn of Africa,” Soil Dynamics and Earthquake Engineering, vol. 170, p. 107913, 2023, doi: 10.1016/j.soildyn.2023.107913.
N. B. Yoma et al., “End-to-end LSTM based estimation of volcano event epicenter localization,” Journal of Volcanology and Geothermal Research, vol. 429, 2022, doi: 10.1016/j.jvolgeores.2022.107615.
R. A. Pramunendar et al., “Integrating Grey Wolf Optimizer for Feature Selection in Birdsong Classification Using K-Nearest Neighbours Algorithm,” International Journal of Intelligent Engineering and Systems, vol. 16, no. 6, pp. 695–705, Dec. 2023, doi: 10.22266/ijies2023.1231.58.
P. I. Santosa and R. A. Pramunendar, “A Robust Feature Construction for Fish Classification Using Grey Wolf Optimizer,” Cybernetics and Information Technologies, vol. 22, no. 4, pp. 152–166, Nov. 2022, doi: 10.2478/cait-2022-0045.
A. Alzaqebah, I. Aljarah, O. Al-Kadi, and R. Damaševičius, “A Modified Grey Wolf Optimization Algorithm for an Intrusion Detection System,” Mathematics, vol. 10, no. 6, pp. 1–16, 2022, doi: 10.3390/math10060999.
A. C. Boucouvalas, M. Gkasios, N. T. Tselikas, and G. Drakatos, "Modified-Fibonacci-Dual-Lucas method for earthquake prediction," in Third international conference on remote sensing and geoinformation of the environment (RSCy2015), vol. 9535, pp. 400-410, 2015.
M. Marisa, U. A. Sembiring, and H. Margaretha, "Earthquake probability prediction in sumatra island using Poisson hidden Markov model (HMM)," in AIP Conference Proceedings, vol. 2192, no. 1, 2019.
H. Dehghani and M. J. Fadaee, “Probabilistic prediction of earthquake by bivariate distribution,” Asian Journal of Civil Engineering, vol. 21, no. 6, pp. 977–983, 2020, doi: 10.1007/s42107-020-00254-y.
A. Kundu, S. Ghosh, and S. Chakraborty, “A long short-term memory based deep learning algorithm for seismic response uncertainty quantification,” Probabilistic Engineering Mechanics, vol. 67, p. 103189, 2022, doi: 10.1016/j.probengmech.2021.103189.
R. Abri and H. Artuner, “LSTM-Based Deep Learning Methods for Prediction of Earthquakes Using Ionospheric Data,” Gazi University Journal of Science, vol. 35, no. 4, pp. 1417–1431, 2022, doi: 10.35378/gujs.950387.
T. Bhandarkar, V. K, N. Satish, S. Sridhar, R. Sivakumar, and S. Ghosh, “Earthquake trend prediction using long short-term memory RNN,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 2, p. 1304, 2019, doi: 10.11591/ijece.v9i2.pp1304-1312.
S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting Time Series,” in 2019 IEEE International Conference on Big Data (Big Data), pp. 3285–3292, 2019, doi: 10.1109/BigData47090.2019.9005997.
Y. Liao, R. Lin, R. Zhang, and G. Wu, “Attention-based LSTM (AttLSTM) neural network for Seismic Response Modeling of Bridges,” Computers and Structures, vol. 275, 2023, doi: 10.1016/j.compstruc.2022.106915.
M. M. Hason, A. N. Hanoon, and A. A. Abdulhameed, “Particle swarm optimization technique-based prediction of peak ground acceleration of Iraq’s tectonic regions,” Journal of King Saud University - Engineering Sciences, vol. 35, no. 7, pp. 463–473, 2023, doi: 10.1016/j.jksues.2021.06.004.
P. K. E S, V. N. Thatha, G. Mamidisetti, S. V. Mantena, P. Chintamaneni, and R. Vatambeti, “Hybrid deep learning model with enhanced sunflower optimization for flood and earthquake detection,” Heliyon, vol. 9, no. 10, p. e21172, 2023, doi: 10.1016/j.heliyon.2023.e21172.
A. M. Chung Baek, E. Park, M. Seong, J. Koo, I. D. Jung, and N. Kim, “Multi-objective robust parameter optimization using the extended and weighted k-means (EWK-means) clustering in laser powder bed fusion (LPBF),” Expert Systems with Applications, vol. 236, 2024, doi: 10.1016/j.eswa.2023.121349.
Y. Xu, H. Cao, J. Shi, S. Pei, and K. She, “A comprehensive multi-parameter optimization method of squeeze film damper-rotor system using hunter-prey optimization algorithm,” Tribology International, vol. 194, p. 109538, 2024, doi: 10.1016/j.triboint.2024.109538.
NCEDC, “Northern California Earthquake Data Center,” UC Berkeley Seismol. Lab., 2014.
P. Ferreira, D. C. Le, and N. Zincir-Heywood, "Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection," 2019 15th International Conference on Network and Service Management (CNSM), pp. 1-7, 2019, doi: 10.23919/CNSM46954.2019.9012708.
C. S. K. Dash, A. K. Behera, S. Dehuri, and A. Ghosh, “An outliers detection and elimination framework in classification task of data mining,” Decision Analytics Journal, vol. 6, p. 100164, 2023, doi: 10.1016/j.dajour.2023.100164.
S. Gupta and K. Deep, “A novel Random Walk Grey Wolf Optimizer,” Swarm and Evolutionary Computation, vol. 44, pp. 101–112, 2019, doi: 10.1016/j.swevo.2018.01.001.
S. M. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
P. Kavianpour, M. Kavianpour, E. Jahani, and A. Ramezani, “A CNN-BiLSTM model with attention mechanism for earthquake prediction,” Journal of Supercomputing, vol. 79, no. 17, pp. 19194–19226, 2023, doi: 10.1007/s11227-023-05369-y.
M. Zandie, H. K. Ng, S. Gan, M. F. Muhamad Said, and X. Cheng, “Multi-input multi-output machine learning predictive model for engine performance and stability, emissions, combustion and ignition characteristics of diesel-biodiesel-gasoline blends,” Energy, vol. 262, p. 125425, 2023, doi: 10.1016/j.energy.2022.125425.
R. M. González, M. A. B. González, A. M. Cruz, A. R. González, and A. L. Pérez, “Classification of land use and vegetation with convolutional neural networks,” Revista Mexicana de Ciencias Forestales, vol. 13, no. 74, pp. 97–119, 2022, doi: 10.29298/rmcf.v13i74.1269.
B. Xia, F. Kong, J. Zhou, X. Wu, and Q. Xie, “Land Resource Use Classification Using Deep Learning in Ecological Remote Sensing Images,” Computational Intelligence and Neuroscience, vol. 2022, 2022, doi: 10.1155/2022/7179477.
R. Rakholia, Q. Le, B. Quoc Ho, K. Vu, and R. Simon Carbajo, “Multi-output machine learning model for regional air pollution forecasting in Ho Chi Minh City, Vietnam,” Environment International, vol. 173, p. 107848, 2023, doi: 10.1016/j.envint.2023.107848.
S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. D. S. Coelho, “Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization,” Expert Systems with Applications, vol. 47, pp. 106–119, 2016, doi: 10.1016/j.eswa.2015.10.039.
S. W. Lin, K. C. Ying, S. C. Chen, and Z. J. Lee, “Particle swarm optimization for parameter determination and feature selection of support vector machines,” Expert Systems with Applications, vol. 35, no. 4, pp. 1817–1824, 2008, doi: 10.1016/j.eswa.2007.08.088.
D. N. Tuyen et al., “A novel approach combining particle swarm optimization and deep learning for flash flood detection from satellite images,” Mathematics, vol. 9, no. 22, 2021, doi: 10.3390/math9222846.
A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle swarm optimization algorithm with adaptive inertia weight,” Applied Soft Computing Journal, vol. 11, no. 4, pp. 3658–3670, 2011, doi: 10.1016/j.asoc.2011.01.037.
G. Asencio-Cortés, F. Martínez-Álvarez, A. Morales-Esteban, and J. Reyes, “A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction,” Knowledge-Based Systems, vol. 101, pp. 15–30, 2016, doi: 10.1016/j.knosys.2016.02.014.
D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15, 2015.
S. R. Young, D. C. Rose, T. P. Karnowski, S. H. Lim, and R. M. Patton, "Optimizing deep learning hyper-parameters through an evolutionary algorithm," in Proceedings of the workshop on machine learning in high-performance computing environments, pp. 1-5, 2015.
DOI: https://doi.org/10.18196/jrc.v5i4.22199
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Guruh Fajar Shidik, Ricardus Anggi Pramunendar, Purwanto Purwanto, Zainal Arifin Hasibuan, Erlin Dolphina, Yupie Kusumawati, Nurul Anisa Sriwinarsih
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com