Parameter Extraction of Triple-diode Photovoltaic Model via RIME Optimizer with Neighborhood Centroid Opposite Solution
Abstract
In this investigation, a novel application of the RIME optimizer with neighborhood centroid opposite solution is introduced to robustly estimate parameter values for an accurate photovoltaic triple-diode model. The suggested optimizer's performance is rigorously evaluated in comparison to other well-documented methods. The evaluation of the proposed optimizer is conducted using real data from the RTC France solar cell, and the results are assessed through various evaluation metrics, including root mean square error and statistical analyses for multiple independent runs. Specifically, the proposed optimizer demonstrates superior performance by achieving the lowest objective function values compared to other algorithms. Through a comprehensive quantitative and qualitative assessment, it can be inferred that the estimated parameters of the triple-diode model obtained using the proposed optimizer surpass the accuracy of those acquired through other optimization algorithms under consideration.
Keywords
Full Text:
PDFReferences
K. Araújo, J. L. Boucher, and O. Aphale, “A clean energy assessment of early adopters in electric vehicle and solar photovoltaic technology: Geospatial, political and socio-demographic trends in New York,” J. Clean. Prod., vol. 216, pp. 99–116, 2019, doi: 10.1016/j.jclepro.2018.12.208.
D. Izci, S. Ekinci, M. Altalhi, M. S. Daoud, H. Migdady, and L. Abualigah, “A new modified version of mountain gazelle optimization for parameter extraction of photovoltaic models,” Electrical Engineering, 2024, doi: 10.1007/s00202-024-02375-y.
D. Izci, S. Ekinci, and A. G. Hussien, “Efficient parameter extraction of photovoltaic models with a novel enhanced prairie dog optimization algorithm,” Sci. Rep., vol. 14, p. 7945, 2024, doi: 10.1038/s41598-024-58503-y.
H. Tyagi, P. R. Chakraborty, S. Powar, and A. K. Agarwal, “Introduction to Solar Energy: Systems, Challenges, and Opportunities,” in Introduction to Solar Energy: Systems, Challenges, and Opportunities, pp. 3–12, 2020, doi: 10.1007/978-981-15-0675-8_1.
A.-E. Ramadan, S. Kamel, T. Khurshaid, S.-R. Oh, and S.-B. Rhee, “Parameter Extraction of Three Diode Solar Photovoltaic Model Using Improved Grey Wolf Optimizer,” Sustainability, vol. 13, p. 6963, 2021, doi: 10.3390/su13126963.
A. Al-Subhi, “Efficient mathematical models for parameters estimation of single-diode photovoltaic cells,” Energy Systems, vol. 15, pp. 275–296, 2024, doi: 10.1007/s12667-022-00542-3.
S. N. Md Sabudin and N. Mohd Jamil, “Mathematical model for predicting the performance of photovoltaic system with delayed solar irradiance,” Kuwait Journal of Science, vol. 51, p. 100207, 2024, doi: 10.1016/j.kjs.2024.100207.
B. S. Abdullaeva, D. Abduvalieva, F. A. Rakhmatova, and M. E. Yulchiev, “Mathematical model of the solar combined cycle power plant using phase change materials in thermal energy storage system (Thermodynamic analysis),” International Journal of Thermofluids, vol. 22, p. 100579, 2024, doi: 10.1016/j.ijft.2024.100579.
O. Bozarov, R. Aliev, A. Kuchkarov, E. Goipov, and M. Kuchkarova, “Results of mathematical modelling of the cooling system for solar panels of a hybrid power plant based on solar and hydraulic energy,” BIO Web Conf., vol. 84, p. 05023, 2024, doi: 10.1051/bioconf/20248405023.
J. Wu, W. An, and Y. Zhang, “The regulating effect of nanoparticle concentration on the performance in HPV/D solar system with nanofluids spectral splitting technique,” Appl. Therm. Eng., vol. 243, p. 122594, 2024, doi: 10.1016/j.applthermaleng.2024.122594.
A. Sharma, A. Sharma, M. Averbukh, V. Jately, B. Azzopardi, “An Effective Method for Parameter Estimation of a Solar Cell,” Electronics (Basel), vol. 10, p. 312, 2021, doi: 10.3390/electronics10030312.
A. Ramadan, S. Kamel, M. H. Hassan, E. M. Ahmed, and H. M. Hasanien, “Accurate Photovoltaic Models Based on an Adaptive Opposition Artificial Hummingbird Algorithm,” Electronics (Basel), vol. 11, p. 318, 2022, doi: 10.3390/electronics11030318.
D. Ben Hmamou et al., “Experimental characterization of photovoltaic systems using sensors based on MicroLab card: Design, implementation, and modeling,” Renew. Energy, vol. 223, p. 120049, 2024, doi: 10.1016/j.renene.2024.120049.
B. Taghezouit, F. Harrou, Y. Sun, and W. Merrouche, “Model-based fault detection in photovoltaic systems: A comprehensive review and avenues for enhancement,” Results in Engineering, vol. 21, p. 101835, 2024, doi: 10.1016/j.rineng.2024.101835.
H. Abdulla, A. Sleptchenko, and A. Nayfeh, “Photovoltaic systems operation and maintenance: A review and future directions,” Renewable and Sustainable Energy Reviews, vol. 195, p. 114342, 2024, doi: 10.1016/j.rser.2024.114342.
A. Mohammad Rafiei and A. Askarzadeh, “An experimental study for efficiency modeling of grid-connected photovoltaic system,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, pp. 475–492, 2024, doi: 10.1080/15567036.2023.2287090.
T. Al Smadi, A. Handam, K. S. Gaeid, A. Al-Smadi, Y. Al-Husban, and A. smadi Khalid, “Artificial intelligent control of energy management PV system,” Results in Control and Optimization, vol. 14, p. 100343, 2024, doi: 10.1016/j.rico.2023.100343.
I. Diab, N. Damianakis, G. R. Chandra-Mouli, and P. Bauer, “A shared PV system for transportation and residential loads to reduce curtailment and the need for storage systems,” Appl. Energy, vol. 353, p. 122131, 2024, doi: 10.1016/j.apenergy.2023.122131.
H. Sharadga, S. Hajimirza, and E. P. T. Cari, “A Fast and Accurate Single-Diode Model for Photovoltaic Design,” IEEE J. Emerg. Sel. Top Power Electron., vol. 9, pp. 3030–3043, 2021, doi: 10.1109/JESTPE.2020.3016635.
G. Sulyok and J. Summhammer, “Extraction of a photovoltaic cell’s double‐diode model parameters from data sheet values,” Energy Sci. Eng., vol. 6, pp. 424–436, 2018, doi: 10.1002/ese3.216.
J. Montano, A. F. T. Mejia, A. A. Rosales Muñoz, F. Andrade, O. D. Garzon Rivera, and J. M. Palomeque, “Salp Swarm Optimization Algorithm for Estimating the Parameters of Photovoltaic Panels Based on the Three-Diode Model,” Electronics (Basel), vol. 10, p. 3123, 2021, doi: 10.3390/electronics10243123.
P. A. Kumari et al., “Application of DSO algorithm for estimating the parameters of triple diode model-based solar PV system,” Sci. Rep., vol. 14, p. 3867, 2024, doi: 10.1038/s41598-024-53582-3.
A. Wadood, E. Ahmed, S. Khan, and H. Ali, “Fraction order particle swarm optimization for parameter extraction of triple-diode photovoltaic models,” Engineering Research Express, vol. 6, p. 025316, 2024, doi: 10.1088/2631-8695/ad3f6f.
R. Kumar and A. Kumar, “Effective-diode-based analysis of industrial solar photovoltaic panel by utilizing novel three-diode solar cell model against conventional single and double solar cell,” Environmental Science and Pollution Research, vol. 31, pp. 25356–25372, 2024, doi: 10.1007/s11356-024-32474-z.
İ. Çetinbaş, “Parameter Extraction of Single, Double, and Triple‐Diode Photovoltaic Models Using the Weighted Leader Search Algorithm,” Global Challenges, vol. 8, no. 5, p. 2300355, 2024, doi: 10.1002/gch2.202300355.
M. Gafar, R. A. El-Sehiemy, H. M. Hasanien, and A. Abaza, “Optimal parameter estimation of three solar cell models using modified spotted hyena optimization,” J. Ambient Intell. Humaniz Comput., vol. 15, no. 1, pp. 361-372, 2024, doi: 10.1007/s12652-022-03896-9.
H. Krishnan, M. S. Islam, M. A. Ahmad, and M. I. M. Rashid, “Parameter identification of solar cells using improved Archimedes Optimization Algorithm,” Optik (Stuttg), vol. 295, p. 171465, 2023 doi: 10.1016/j.ijleo.2023.171465.
H. Ben Aribia et al., “Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules,” Sustainability, vol. 15, p. 7896, 2023, doi: 10.3390/su15107896.
R. Mohamed, M. Abdel-Basset, K. M. Sallam, I. M. Hezam, A. M. Alshamrani, and I. A. Hameed, “Novel hybrid kepler optimization algorithm for parameter estimation of photovoltaic modules,” Sci. Rep., vol. 14, p. 3453, 2024, doi: 10.1038/s41598-024-52416-6.
M. Qaraad, S. Amjad, N. K. Hussein, M. A. Farag, S. Mirjalili, and M. A. Elhosseini, “Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation,” Expert Syst. Appl., vol. 236, p. 121417, 2024, doi: 10.1016/j.eswa.2023.121417.
D. İzci, S. Ekinci, and M. Güleydin, “Improved Reptile Search Algorithm for Optimal Design of Solar Photovoltaic Module,” Computer Science IDAP-2023, pp. 172–179, 2023.
H. Su et al., “RIME: A physics-based optimization,” Neurocomputing, vol. 532, pp. 183–214, 2023, doi: 10.1016/j.neucom.2023.02.010.
S. Ekinci, Ö. Can, M. Ş. Ayas, D. Izci, M. Salman, and M. Rashdan, “Automatic Generation Control of a Hybrid PV-Reheat Thermal Power System Using RIME Algorithm,” IEEE Access, vol. 12, pp. 26919–26930, 2024, doi: 10.1109/ACCESS.2024.3367011.
H. R. Tizhoosh, “Opposition-Based Learning: A New Scheme for Machine Intelligence,” in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), pp. 695–701, 2005, doi: 10.1109/CIMCA.2005.1631345.
D. Izci, S. Ekinci, E. Eker, and M. Kayri, “Improved Manta Ray Foraging Optimization Using Opposition-based Learning for Optimization Problems,” in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–6, 2020, doi: 10.1109/HORA49412.2020.9152925.
S. Ekinci, Ö. Can, and D. Izci, “Controller design for automatic voltage regulator system using modified opposition-based weighted mean of vectors algorithm,” International Journal of Modelling and Simulation, pp. 1–18, 2023, doi: 10.1080/02286203.2023.2274254.
D. Izci, S. Ekinci, E. Eker, and M. Kayri, “Augmented hunger games search algorithm using logarithmic spiral opposition-based learning for function optimization and controller design,” Journal of King Saud University - Engineering Sciences, 2022, doi: 10.1016/j.jksues.2022.03.001.
D. Izci, S. Ekinci, E. Eker, and L. Abualigah, “Opposition-Based Arithmetic Optimization Algorithm with Varying Acceleration Coefficient for Function Optimization and Control of FES System,” in Proceedings of International Joint Conference on Advances in Computational Intelligence, pp. 283–293, 2022, doi: 10.1007/978-981-19-0332-8_20.
D. Izci, S. Ekinci, E. Eker, and M. Kayri, “A novel modified opposition‐based hunger games search algorithm to design fractional order proportional‐integral‐derivative controller for magnetic ball suspension system,” Advanced Control for Applications, vol. 4, p. e96, 2022, doi: 10.1002/adc2.96.
S. Ekinci, D. Izci, L. Abualigah, A. G. Hussien, C.-L. Thanh, and S. Khatir, “Revolutionizing Vehicle Cruise Control: An Elite Opposition-Based Pattern Search Mechanism Augmented INFO Algorithm for Enhanced Controller Design,” International Journal of Computational Intelligence Systems, vol. 16, p. 129, 2023, doi: 10.1007/s44196-023-00304-8.
D. Izci, S. Ekinci, E. Eker, and A. Demirören, “Biomedical Application of a Random Learning and Elite Opposition-Based Weighted Mean of Vectors Algorithm with Pattern Search Mechanism,” Journal of Control, Automation and Electrical Systems, vol. 34, pp. 333–343, 2023, doi: 10.1007/s40313-022-00959-2.
H. Özmen, S. Ekinci, and D. Izci, “Boosted arithmetic optimization algorithm with elite opposition-based pattern search mechanism and its promise to design microstrip patch antenna for WLAN and WiMAX,” International Journal of Modelling and Simulation, pp. 1–16, 2023, doi: 10.1080/02286203.2023.2196736.
S. Ekinci, D. Izci, L. Abualigah, and R. A. Zitar, “A Modified Oppositional Chaotic Local Search Strategy Based Aquila Optimizer to Design an Effective Controller for Vehicle Cruise Control System,” J. Bionic. Eng., vol. 20, pp. 1828–1851, 2023, doi: 10.1007/s42235-023-00336-y.
L. Abualigah, S. Ekinci, D. Izci, and R. A. Zitar, “Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System,” Intelligent Automation & Soft Computing, vol. 38, pp. 169–183, 2023, doi: 10.32604/iasc.2023.040291.
D. Izci, S. Ekinci, E. Eker, and A. Dundar, “Improving Arithmetic Optimization Algorithm Through Modified Opposition-based Learning Mechanism,” in 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5, 2021, doi: 10.1109/ISMSIT52890.2021.9604531.
T. J. Choi, J. Togelius, and Y.-G. Cheong, “A Fast and efficient stochastic opposition-based learning for differential evolution in numerical optimization,” Swarm Evol. Comput., vol. 60, p. 100768, 2021, doi: 10.1016/j.swevo.2020.100768.
N. Rizvi, D. Ramesh, P. C. S. Rao, and K. Mondal, “Intelligent Salp Swarm Scheduler With Fitness Based Quasi-Reflection Method for Scientific Workflows in Hybrid Cloud-Fog Environment,” IEEE Transactions on Automation Science and Engineering, vol. 20, pp. 862–877, 2023, doi: 10.1109/TASE.2022.3170549.
M. Elsisi, “Improved grey wolf optimizer based on opposition and quasi learning approaches for optimization: case study autonomous vehicle including vision system,” Artif. Intell. Rev., vol. 55, no. 7, pp. 5597-5620, 2022, doi: 10.1007/s10462-022-10137-0.
T. Si et al., “PCOBL: A Novel Opposition-Based Learning Strategy to Improve Metaheuristics Exploration and Exploitation for Solving Global Optimization Problems,” IEEE Access, vol. 11, pp. 46413–46440, 2023, doi: 10.1109/ACCESS.2023.3273298.
S. Ekinci, D. Izci, E. Eker, L. Abualigah, C.-L. Thanh, and S. Khatir, “Hunger games pattern search with elite opposite-based solution for solving complex engineering design problems,” Evolving Systems, pp. 1-26, 2023, doi: 10.1007/s12530-023-09526-9.
S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, and G. F. Naterer, “Computing opposition by involving entire population,” in 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1800–1807, 2014, doi: 10.1109/CEC.2014.6900329.
B. Li, L.-G. Gong, and Y. Li, “A Novel Artificial Bee Colony Algorithm Based on Internal-Feedback Strategy for Image Template Matching,” The Scientific World Journal, vol. 2014, pp. 1–14, 2014, doi: 10.1155/2014/906861.
C. Fan, Y. Zhou, and Z. Tang, “Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks,” Evol. Intell., vol. 14, pp. 1847-1867, 2020.
L. Liao and Y. Zhou, “A Neighborhood Centroid Opposition-Based Grasshopper Optimization Algorithm,” J. Phys. Conf. Ser., vol. 1176, p. 032044, 2019, doi: 10.1088/1742-6596/1176/3/032044.
S. Rahnamayan, J. Jesuthasan, F. Bourennani, G. F. Naterer, and H. Salehinejad, “Centroid Opposition-Based Differential Evolution,” International Journal of Applied Metaheuristic Computing, vol. 5, pp. 1–25, 2014, doi: 10.4018/ijamc.2014100101.
M. Abdel-Basset, R. Mohamed, A. El-Fergany, M. Abouhawwash, and S. S. Askar, “Parameters Identification of PV Triple-Diode Model Using Improved Generalized Normal Distribution Algorithm,” Mathematics, vol. 9, p. 995, 2021, doi: 10.3390/math9090995.
S. Ekinci, D. Izci, and A. G. Hussien, “Comparative analysis of the hybrid gazelle‐Nelder–Mead algorithm for parameter extraction and optimization of solar photovoltaic systems,” IET Renewable Power Generation, vol. 18, pp. 959–978, 2024, doi: 10.1049/rpg2.12974.
D. Izci, S. Ekinci, S. Dal, and N. Sezgin, “Parameter Estimation of Solar Cells via Weighted Mean of Vectors Algorithm,” in 2022 Global Energy Conference (GEC), pp. 312–316, 2022, doi: 10.1109/GEC55014.2022.9986943.
H. A. Ismail and A. A. Z. Diab, “An efficient, fast, and robust algorithm for single diode model parameters estimation of photovoltaic solar cells,” IET Renewable Power Generation, vol. 18, pp. 863–874, 2024, doi: 10.1049/rpg2.12958.
N. J. Mlazi, M. Mayengo, G. Lyakurwa, and B. Kichonge, “Mathematical modeling and extraction of parameters of solar photovoltaic module based on modified Newton–Raphson method,” Results Phys., vol. 57, p. 107364, 2024, doi: 10.1016/j.rinp.2024.107364.
DOI: https://doi.org/10.18196/jrc.v5i4.22256
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Davut Izci, Serdar Ekinci, Alfian Ma'arif
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com