Design of a Control System for Hybrid Quadcopter Tilt Rotor Based on Backward Transition Algorithm
Abstract
An Unmanned Aerial Vehicle (UAV) is an unmanned aerial vehicle that can be controlled using either automatic or manual control. UAVs are divided into two types: rotary-wing, which uses rotating propellers to fly the aircraft, and fixed-wing, which uses fixed wings to fly the aircraft. One of the advanced developments in UAV technology is the Hybrid Vertical Take-Off Landing Quadrotor Tiltrotor Aircraft (QTRA) system, which combines the quadrotor UAV system, classified under rotary-wing, with the fixed-wing UAV system. This allows for vertical takeoff and landing as well as the ability to cruise at maximum speed. In the transition between flight modes, from quadcopter to fixed-wing and vice versa, the transition is carried out by changing the thrust direction of the two front UAV rotors from horizontal to vertical and vice versa. The change in thrust angle on the rotor is referred to as a tilt rotor. The problem that arises from changing the aircraft mode from fixed-wing to quadcopter is controlling the UAV's transition mode, which must not lose its lift force. Therefore, the tilt angle must be changed as quickly as possible. To solve this issue, a Hybrid VTOL Quadrotor Tiltrotor aircraft concept was designed with fast response, controlled by a Proportional Derivative (PD) controller. The results of the PD control system response were tested in simulations by observing the X and Z positions of the UAV, which can stabilize the position during the transition. The success criteria targeted for a stable response include a tilting angle with a settling time of 7 seconds, an overshoot height of 16 meters, and a steady-state error approaching zero. From the transition simulation tests, the system response data showed performance with an X-axis settling time of 37 seconds, a steady-state error value of 0.1 meters, and an overshoot of 0.4%.
Keywords
Full Text:
PDFReferences
C. Li, Y. Gan, Y. Zhang, and Y. Luo, “A Cooperative Computation Offloading Strategy With On-Demand Deployment of Multi-UAVs in UAV-Aided Mobile Edge Computing,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 2, pp. 2095–2110, 2024, doi: 10.1109/TNSM.2023.3332899.
R. M. Rolly, P. Malarvezhi, and T. D. Lagkas, “Unmanned aerial vehicles: Applications, techniques, and challenges as aerial base stations,” Int. J. Distrib. Sens. Networks, vol. 18, no. 9, 2022, doi: 10.1177/15501329221123933.
G. Lin, H. Li, C. K. Ahn, and D. Yao, “Event-Based Finite-Time Neural Control for Human-in-the-Loop UAV Attitude Systems,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 12, pp. 10387–10397, 2023, doi: 10.1109/TNNLS.2022.3166531.
R. Akter, M. Golam, V. S. Doan, J. M. Lee, and D. S. Kim, “IoMT-Net: Blockchain-Integrated Unauthorized UAV Localization Using Lightweight Convolution Neural Network for Internet of Military Things,” IEEE Internet Things J., vol. 10, no. 8, pp. 6634–6651, 2023, doi: 10.1109/JIOT.2022.3176310.
M. Ciopcia and C. Szczepański, “Quad-Tiltrotor–modelling and control,” J. Mar. Eng. Technol., vol. 16, no. 4, pp. 331–336, 2018, doi: 10.1080/20464177.2017.1388068.
J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, “A Clustering-Based Coverage Path Planning Method for Autonomous Heterogeneous UAVs,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 25546–25556, 2022, doi: 10.1109/TITS.2021.3066240.
D. K. Jain, Y. Li, M. J. Er, Q. Xin, D. Gupta, and K. Shankar, “Enabling Unmanned Aerial Vehicle Borne Secure Communication With Classification Framework for Industry 5.0,” IEEE Trans. Ind. Informatics, vol. 18, no. 8, pp. 5477–5484, 2022, doi: 10.1109/TII.2021.3125732.
A. Fotouhi et al., “Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019, doi: 10.1109/COMST.2019.2906228.
A. P. Cohen, S. A. Shaheen, and E. M. Farrar, “Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 6074–6087, 2021, doi: 10.1109/TITS.2021.3082767.
S. Aggarwal, N. Kumar, and S. Tanwar, “Blockchain-envisioned UAV communication using 6G networks: Open issues, use cases, and future directions,” IEEE Internet Things J., vol. 8, no. 7, pp. 5416–5441, 2021, doi: 10.1109/JIOT.2020.3020819.
S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, “Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends,” Intell. Serv. Robot., vol. 16, no. 1, pp. 109–137, 2023, doi: 10.1007/s11370-022-00452-4.
A. Buffi, A. Motroni, P. Nepa, B. Tellini, and R. Cioni, “A SAR-Based Measurement Method for Passive-Tag Positioning with a Flying UHF-RFID Reader,” IEEE Trans. Instrum. Meas., vol. 68, no. 3, pp. 845–853, 2019, doi: 10.1109/TIM.2018.2857045.
A. N. Wilson, A. Kumar, A. Jha, and L. R. Cenkeramaddi, “Embedded Sensors, Communication Technologies, Computing Platforms and Machine Learning for UAVs: A Review,” IEEE Sens. J., vol. 22, no. 3, pp. 1807–1826, 2022, doi: 10.1109/JSEN.2021.3139124.
M. A. O. Rabah, H. Drid, M. Rahouti, and N. Lazaar, Empowering UAV Communications with AI-Assisted Software-Defined Networks: A Review on Performance, Security, and Efficiency, vol. 32, no. 4, 2024, doi: 10.1007/s10922-024-09866-0.
C. Chen et al., “YOLO-Based UAV Technology: A Review of the Research and Its Applications,” Drones, vol. 7, no. 3, 2023, doi: 10.3390/drones7030190.
M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91, pp. 99–131, 2017, doi: 10.1016/j.paerosci.2017.04.003.
E. Tal, G. Ryou, and S. Karaman, “Aerobatic Trajectory Generation for a VTOL Fixed-Wing Aircraft Using Differential Flatness,” IEEE Trans. Robot., vol. 39, no. 6, pp. 4805–4819, 2023, doi: 10.1109/TRO.2023.3301312.
P. Poksawat, L. Wang, and A. Mohamed, “Gain Scheduled Attitude Control of Fixed-Wing UAV with Automatic Controller Tuning,” IEEE Trans. Control Syst. Technol., vol. 26, no. 4, pp. 1192–1203, 2018, doi: 10.1109/TCST.2017.2709274.
K. Yamaguchi and S. Hara, “On Structural Parameter Optimization Method for Quad Tilt-Wing UAV Based on Indirect Size Estimation of Domain of Attraction,” IEEE Access, vol. 10, pp. 1678–1687, 2022, doi: 10.1109/ACCESS.2021.3139156.
D. Brescianini and R. D’Andrea, “Tilt-Prioritized Quadrocopter Attitude Control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 376–387, 2020, doi: 10.1109/TCST.2018.2873224.
S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles ( UAVs ): A Comprehensive Review,” Drones, vol. 6, no. 6, p. 147, 2022.
C. Lee, S. Kim, and B. Chu, “A Survey: Flight Mechanism and Mechanical Structure of the UAV,” Int. J. Precis. Eng. Manuf., vol. 22, no. 4, pp. 719–743, 2021, doi: 10.1007/s12541-021-00489-y.
P. S. Ramesh and J. V. Muruga Lal Jeyan, “Comparative Analysis of Fixed-Wing, Rotary-Wing and Hybrid Mini Unmanned Aircraft Systems (UAS) from the Applications Perspective,” INCAS Bull., vol. 14, no. 1, pp. 137–151, 2022, doi: 10.13111/2066-8201.2022.14.1.12.
E. J. J. Smeur, M. Bronz, and G. C. H. E. de Croon, “Incremental control and guidance of hybrid aircraft applied to a tailsitter unmanned air vehicle,” J. Guid. Control. Dyn., vol. 43, no. 2, pp. 274–287, 2020, doi: 10.2514/1.G004520.
Z. Wang, R. Zu, D. Duan, and J. Li, “Tuning of ADRC for QTR in Transition Process Based on NBPO Hybrid Algorithm,” IEEE Access, vol. 7, pp. 177219–177240, 2019, doi: 10.1109/ACCESS.2019.2957318.
S. Panigrahi, Y. S. S. Krishna, and A. Thondiyath, “Design, analysis, and testing of a hybrid vtol tilt-rotor uav for increased endurance,” Sensors, vol. 21, no. 18, pp. 1–21, 2021, doi: 10.3390/s21185987.
C. Zeng, R. Abnous, K. Gabani, S. Chowdhury, and V. Maldonado, “A new tilt-arm transitioning unmanned aerial vehicle: Introduction and conceptual design,” Aerosp. Sci. Technol., vol. 99, p. 105755, 2020, doi: 10.1016/j.ast.2020.105755.
H. Zhao, B. Wang, Y. Shen, Y. Zhang, N. Li, and Z. Gao, “Development of Multimode Flight Transition Strategy for Tilt-Rotor VTOL UAVs,” Drones, vol. 7, no. 9, pp. 1–19, 2023, doi: 10.3390/drones7090580.
A. S. Saeed, A. B. Younes, C. Cai, and G. Cai, “A survey of hybrid Unmanned Aerial Vehicles,” Prog. Aerosp. Sci., vol. 98, pp. 91–105, 2018, doi: 10.1016/j.paerosci.2018.03.007.
D. Duan, Z. Wang, Q. Wang, and J. Li, “Research on integrated optimization design method of high-efficiency motor propeller system for UAVs with multi-states,” IEEE Access, vol. 8, pp. 165432–165443, 2020, doi: 10.1109/ACCESS.2020.3014411.
C. Chen, J. Zhang, D. Zhang, and L. Shen, “Control and flight test of a tilt-rotor unmanned aerial vehicle,” Int. J. Adv. Robot. Syst., vol. 14, no. 1, pp. 1–12, 2017, doi: 10.1177/1729881416678141.
N. Mohammadi, M. Tayefi, and M. Zhu, “Nonlinear modeling and designing transition flight control scenarios for a dual thrust hybrid UAV,” Int. J. Intell. Robot. Appl., vol. 8, no. 3, pp. 525–545, 2024, doi: 10.1007/s41315-024-00354-x.
J. ZHONG and C. WANG, “Transition characteristics for a small tail-sitter unmanned aerial vehicle,” Chinese J. Aeronaut., vol. 34, no. 10, pp. 220–236, 2021, doi: 10.1016/j.cja.2020.12.021.
R. Yang, C. Du, Y. Zheng, H. Gao, Y. Wu, and T. Fang, “PPO-Based Attitude Controller Design for a Tilt Rotor UAV in Transition Process,” Drones, vol. 7, no. 8, 2023, doi: 10.3390/drones7080499.
B. Li, J. Sun, W. Zhou, C. Y. Wen, K. H. Low, and C. K. Chen, “Transition Optimization for a VTOL Tail-Sitter UAV,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 5, pp. 2534–2545, 2020, doi: 10.1109/TMECH.2020.2983255.
N. LIU, Z. CAI, Y. WANG, and J. ZHAO, “Fast level-flight to hover mode transition and altitude control in tiltrotor’s landing operation,” Chinese J. Aeronaut., vol. 34, no. 1, pp. 181–193, 2021, doi: 10.1016/j.cja.2020.09.041.
Z. Kong and Q. Lu, “Mathematical Modeling and Modal Switching Control of a Novel Tiltrotor UAV,” J. Robot., vol. 2018, pp. 12–15, 2018, doi: 10.1155/2018/8641731.
A. Misra et al., “A Review on Vertical Take-Off and Landing (VTOL) Tilt-Rotor and Tilt Wing Unmanned Aerial Vehicles (UAVs),” J. Eng., vol. 2022, pp. 1–27, 2022, doi: 10.1155/2022/1803638.
S. Du and Y. Zha, “Numerical simulation of the transition flight aerodynamics of cross ‑ shaped quad ‑ tiltrotor UAV,” Sci. Rep., pp. 1–12, 2024, doi: 10.1038/s41598-024-68927-1.
Z. Lin, B. Yan, T. Zhang, S. Li, Z. Meng, and S. Liu, “Multi-Level Switching Control Scheme for Folding Wing VTOL UAV Based on Dynamic Allocation,” Drones, vol. 8, no. 7, pp. 1–22, 2024, doi: 10.3390/drones8070303.
Q. Huang, G. He, J. Jia, Z. Hong, and F. Yu, “Numerical Simulation on Aerodynamic Characteristics of Transition Section of Tilt-Wing Aircraft,” Aerospace, vol. 11, no. 4, p. 283, 2024.
C. Kikumoto, T. Urakubo, K. Sabe, and Y. Hazama, “Back-Transition Control With Large Deceleration for a Dual Propulsion VTOL UAV Based on Its Maneuverability,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11697–11704, 2022, doi: 10.1109/LRA.2022.3205450.
A. N. De Lucena, B. M. F. Da Silva, and L. M. G. Gonçalves, "Double Hybrid Tailsitter Unmanned Aerial Vehicle With Vertical Takeoff and Landing," in IEEE Access, vol. 10, pp. 32938-32953, 2022, doi: 10.1109/ACCESS.2022.3161490.
R. Zhao et al., “Analysis, optimization, and testing of a tilt-body aircraft,” Aerosp. Sci. Technol., vol. 154, no. July, 2024, doi: 10.1016/j.ast.2024.109385.
M. Sajid, H. Mittal, S. Pare, and M. Prasad, “Routing and scheduling optimization for UAV assisted delivery system: A hybrid approach,” Appl. Soft Comput., vol. 126, p. 109225, 2022, doi: 10.1016/j.asoc.2022.109225.
R. She and Y. Ouyang, “Efficiency of UAV-based last-mile delivery under congestion in low-altitude air,” Transp. Res. Part C Emerg. Technol., vol. 122, p. 102878, 2021, doi: 10.1016/j.trc.2020.102878.
E. Tal and S. Karaman, “Global Incremental Flight Control for Agile Maneuvering of a Tailsitter Flying Wing,” J. Guid. Control. Dyn., vol. 45, no. 12, pp. 2332–2349, 2022, doi: 10.2514/1.G006645.
J. B. Willis and R. W. Beard, “Pitch and Thrust Allocation for Full-Flight-Regime Control of Winged eVTOL UAVs,” IEEE Control Syst. Lett., vol. 6, pp. 1058–1063, 2022, doi: 10.1109/LCSYS.2021.3089130.
L. Bauersfeld, L. Spannagl, G. Ducard, and C. Onder, “MPC Flight Control for a Tilt-Rotor VTOL Aircraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 4, pp. 2395–2409, 2021, doi: 10.1109/TAES.2021.3061819.
S. M. Nogar and C. M. Kroninger, “Development of a Hybrid Micro Air Vehicle Capable of Controlled Transition,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2269–2276, 2018, doi: 10.1109/LRA.2018.2800797.
Y. Lu, Z. Xue, G. S. Xia, and L. Zhang, “A survey on vision-based UAV navigation,” Geo-Spatial Inf. Sci., vol. 21, no. 1, pp. 21–32, 2018, doi: 10.1080/10095020.2017.1420509.
H. Ren, Y. Zhao, W. Xiao, and Z. Hu, “A review of UAV monitoring in mining areas: current status and future perspectives,” Int. J. Coal Sci. Technol., vol. 6, no. 3, pp. 320–333, 2019, doi: 10.1007/s40789-019-00264-5.
X. Yan, R. Chen, B. Lou, Y. Xie, A. Xie, and D. Zhang, “Study on Control Strategy for Tilt-rotor Aircraft Conversion Procedure,” J. Phys. Conf. Ser., vol. 1924, no. 1, 2021, doi: 10.1088/1742-6596/1924/1/012010.
G. S. Xia, M. Datcu, W. Yang, and X. Bai, “Information processing for unmanned aerial vehicles (UAVs) in surveying, mapping, and navigation,” Geo-Spatial Inf. Sci., vol. 21, no. 1, p. 1, 2018, doi: 10.1080/10095020.2017.1420510.
E. U. Rojo-Rodriguez, E. G. Rojo-Rodriguez, S. A. Araujo-Estrada, and O. Garcia-Salazar, “Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions,” Machines, vol. 12, no. 9, pp. 1–30, 2024, doi: 10.3390/machines12090653.
N. Mohammadi, M. Tayefi, and M. Zhu, “Vertical take-off and hover to cruise transition for a hybrid UAV using model predictive controller and MPC allocation,” Aircr. Eng. Aerosp. Technol., vol. 95, no. 10, pp. 1642–1650, 2023, doi: 10.1108/AEAT-04-2023-0090.
Z. Fang and A. V. Savkin, “Strategies for Optimized UAV Surveillance in Various Tasks and Scenarios: A Review,” Drones, vol. 8, no. 5, 2024, doi: 10.3390/drones8050193.
A. Bin Junaid, A. D. D. C. Sanchez, J. B. Bosch, N. Vitzilaios, and Y. Zweiri, “Design and implementation of a dual-axis tilting quadcopter,” Robotics, vol. 7, no. 4, pp. 1–20, 2018, doi: 10.3390/robotics7040065.
L. Zhong, H. Yuqing, Y. Liying, and H. Jianda, “Control techniques of tilt rotor unmanned aerial vehicle systems : A review,” Chinese J. Aeronaut., vol. 30, no. 1, pp. 135–148, 2017, doi: 10.1016/j.cja.2016.11.001.
Z. H. Cheng and H. L. Pei, “Transition Analysis and Practical Flight Control for Ducted Fan Fixed-Wing Aerial Robot: Level Path Flight Mode Transition,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 3106–3113, 2022, doi: 10.1109/LRA.2022.3145087.
A. C. Daud Filho and E. M. Belo, “A tilt-wing VTOL UAV configuration: Flight dynamics modelling and transition control simulation,” Aeronaut. J., vol. 128, no. 1319, pp. 152–177, 2024, doi: 10.1017/aer.2023.34.
X. ZHOU, X. ZHANG, B. WANG, and Q. ZHAO, “Aerodynamic and structural characteristics of helicopter rotor in circling flight,” Chinese J. Aeronaut., vol. 36, no. 12, pp. 282–296, 2023, doi: 10.1016/j.cja.2023.07.025.
C. Kang, S. Wang, W. Ren, Y. Lu, and B. Wang, “Optimization Design and Application of Active Disturbance Rejection Controller Based on Intelligent Algorithm,” IEEE Access, vol. 7, pp. 59862–59870, 2019, doi: 10.1109/ACCESS.2019.2909087.
P. Casau, D. Cabecinhas, and C. Silvestre, “Hybrid control strategy for the autonomous transition flight of a fixed-wing aircraft,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6, pp. 2194–2211, 2013, doi: 10.1109/TCST.2012.2221091.
I. Lopez-Sanchez and J. Moreno-Valenzuela, “PID control of quadrotor UAVs: A survey,” Annu. Rev. Control, vol. 56, p. 100900, 2023, doi: 10.1016/j.arcontrol.2023.100900.
T. de J. Mateo Sanguino and J. M. Lozano Domínguez, “Design and stabilization of a Coandă effect-based UAV: Comparative study between fuzzy logic and PID control approaches,” Rob. Auton. Syst., vol. 175, pp. 1–14, 2024, doi: 10.1016/j.robot.2024.104662.
D. N. Cardoso, S. Esteban, and G. V. Raffo, “A new robust adaptive mixing control for trajectory tracking with improved forward flight of a tilt-rotor UAV,” ISA Trans., vol. 110, pp. 86–104, 2021, doi: 10.1016/j.isatra.2020.10.040.
M. Allenspach and G. J. J. Ducard, “Nonlinear model predictive control and guidance for a propeller-tilting hybrid unmanned air vehicle,” Automatica, vol. 132, p. 109790, 2021, doi: 10.1016/j.automatica.2021.109790.
W. Tian, L. Liu, X. Zhang, and J. Shao, “Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method,” Appl. Energy, vol. 364, p. 123166, 2024, doi: 10.1016/j.apenergy.2024.123166.
B. Wang, D. Zhu, L. Han, H. Gao, Z. Gao, and Y. Zhang, “Adaptive Fault-Tolerant Control of a Hybrid Canard Rotor/Wing UAV under Transition Flight Subject to Actuator Faults and Model Uncertainties,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 4, pp. 4559–4574, 2023, doi: 10.1109/TAES.2023.3243580.
Y. Zou, C. Liu, and K. Lu, “Robust smooth transfer for tilt-rotor aircraft under the asynchronous switching,” J. Franklin Inst., vol. 358, no. 18, pp. 9698–9720, 2021, doi: 10.1016/j.jfranklin.2021.10.016.
G. J. J. Ducard and M. Allenspach, “Review of designs and flight control techniques of hybrid and convertible VTOL UAVs,” Aerosp. Sci. Technol., vol. 118, p. 107035, 2021, doi: 10.1016/j.ast.2021.107035.
B. Sen Chen and T. W. Hung, “Integrating Local Motion Planning and Robust Decentralized Fault-Tolerant Tracking Control for Search and Rescue Task of Hybrid UAVs and Biped Robots Team System,” IEEE Access, vol. 11, pp. 45888–45909, 2023, doi: 10.1109/ACCESS.2023.3273787.
J. Liao and H. Bang, “Transition Nonlinear Blended Aerodynamic Modeling and Anti-Harmonic Disturbance Robust Control of Fixed-Wing Tiltrotor UAV,” Drones, vol. 7, no. 4, 2023, doi: 10.3390/drones7040255.
J. Wang, R. Chen, Z. Yu, and J. Lu, “Ground test and numerical investigation on aerodynamic performance of a quad tilt-rotor aircraft in ground and water effects,” Ocean Eng., vol. 289, no. P2, p. 116169, 2023, doi: 10.1016/j.oceaneng.2023.116169.
V. S. Chipade, Abhishek, M. Kothari, and R. R. Chaudhari, “Systematic design methodology for development and flight testing of a variable pitch quadrotor biplane VTOL UAV for payload delivery,” Mechatronics, vol. 55, pp. 94–114, 2018, doi: 10.1016/j.mechatronics.2018.08.008.
H. Zhang, B. Song, F. Li, and J. Xuan, “Multidisciplinary design optimization of an electric propulsion system of a hybrid UAV considering wind disturbance rejection capability in the quadrotor mode,” Aerosp. Sci. Technol., vol. 110, p. 106372, 2021, doi: 10.1016/j.ast.2020.106372.
T. Patel, M. Kumar, and S. Abdallah, “Control of Hybrid Transitioning Morphing-wing VTOL UAV,” IFAC-PapersOnLine, vol. 55, no. 37, pp. 554–559, 2022, doi: 10.1016/j.ifacol.2022.11.241.
N. T. Hegde, V. I. George, C. Gurudas Nayak, and K. Kumar, “Transition flight modeling and robust control of a VTOL unmanned quad tilt-rotor aerial vehicle,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 3, pp. 1252–1261, 2020, doi: 10.11591/ijeecs.v18.i3.pp1252b-cd.
N. Pavan, "Design of Tiltrotor VTOL and Development of Simulink Environment for Flight Simulations," Indian Institute of Technology Madras, 2020.
DOI: https://doi.org/10.18196/jrc.v6i1.22594
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Purwadi Agus Darwito, Nilla Perdana Agustina, Hudzaifa Dhiaul Ahnaf, Syahrizal Faried Roosydi, Detak Yan Pratama, Totok Ruki Biyanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com