On New Results of Stability and Synchronization in Finite-Time for Fitiz-Nagamo Model Using Grownal Inequality and Lyapunov Function

Iqbal M. Batiha, Issam Bendib, Adel Ouannas, Iqbal H. Jebril, Shawkat Alkhazaleh, Shaher Momani

Abstract


Ionic diffusion across cytomembranes plays a critical role in both biological and chemical systems. This paper reexamines the FitzHugh-Nagumo reaction-diffusion system, specifically incorporating the influence of diffusion on the system’s dynamics. We focus on the system’s finite-time stability, demonstrating that it achieves and maintains equilibrium within a specified time interval. Unlike asymptotic stability, which ensures long-term convergence, finite-time stability guarantees rapid convergence to equilibrium, a crucial feature for real-time control applications. We prove that the equilibrium point of the FitzHugh-Nagumo system exhibits finite-time stability under certain conditions. In particular, we provide a criterion for finite-time stability and derive results using new lemmas and a theorem to guide the system’s design for reliable performance. Additionally, the paper discusses finite-time synchronization in reaction-diffusion systems, emphasizing its importance for achieving coherent dynamics across distributed components within a finite time. This approach has significant implications for fields requiring precise control and synchronization, such as sensor networks and autonomous systems. Practical simulations are presented to elucidate the theoretical principles discussed earlier, using the finite difference method (FDM) implemented in MATLAB.


Keywords


Fitzhugh-Nagumo Reaction-Diffusion System; FiniteTime Stability; Real-Time Control; Finite-Time Synchronization; Reaction-Diffusion Systems; Finite Difference Method (FDM).

Full Text:

PDF

References


K.-E. Petousakis, A. A. Apostolopoulou, and P. Poiraz, “The impact of Hodgkin-Huxley models on dendritic research,” The Journal of Physiology, vol. 601, no. 15, pp. 3091-3102, 2023, doi: 10.1113/JP282756.

T. Ma, “The study of the development of the Hodgkin-Huxley (HH) neuron model,” SHS Web Conferences, vol. 144, pp. 1-5, 2022, doi: 10.1051/shsconf/202214401015.

X. Zhou, Y. Xu, G. Wang, and Y. Jia, “Ionic channel blockage in stochastic Hodgkin-Huxley neuronal model driven by multiple oscillatory signals,” Cognitive Neurodynamics, vol. 14, no. 4, pp. 569-578, 2020, doi: 10.1007/s11571-020-09593-7.

K. M. Wouapi, B. H. Fotsin, F. P. Louodop, K. F. Feudjio, Z. T. Njitacke, and T. H. Djeudjo, “Various firing activities and finite-time synchronization of an improved Hindmarsh?Rose neuron model under electric field effect,” Cognitive Neurodynamics, vol. 14, no. 3, pp. 375- 397, 2020, doi: 10.1007/s11571-020-09570-0.

D. Cebrian-Lacasa, P. Parra-Rivas, D. Ruiz-Reyns, and L. Gelens, “Six ´ decades of the FitzHugh-Nagumo model: A guide through its spatiotemporal dynamics and influence across disciplines,” arXiv, 2024, doi: 10.48550/arXiv.2404.11403.

S. Shahid, M. Abbas, and E. Kwessi, “Nonstandard nearly exact analysis of the FitzHugh-Nagumo model,” Symmetry, vol. 16, no. 5, p. 585, 2024, doi: 10.3390/sym16050585.

B. Zhen and J. Xu, “Fold-Hopf bifurcation analysis for a coupled FitzHugh-Nagumo neural system with time delay,” International Journal of Bifurcation and Chaos, vol. 20, no. 12, pp. 3919-3934, 2020, doi: 10.1142/S0218127410028112.

Q. Xu, X. Chen, B. Chen, H. Wu, Z. Li, and H. Bao, “Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation,” Nonlinear Dynamics, vol. 111, no. 3, pp. 1-13, 2023, doi: 10.1007/s11071-023-08274-4.

S. Wang, J. Mei, D. Xia, Z. Yang, and J. Hu, “Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control,” Chaos Solitons Fractals, vol. 164, p. 112724, 2022, doi: 10.1016/j.chaos.2022.112724.

B. Q. Cao, X. B. Nie, J. D. Cao, and P. Y. Duan, “Practical finitetime adaptive neural networks control for incommensurate fractionalorder nonlinear systems,” Nonlinear Dynamics, vol. 111, pp. 4375-4393, 2023, doi: 10.1007/s11071-022-08096-w.

Z. Q. Zhang and J. D. Cao, “Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, pp. 1476-1485, 2019, doi: 10.1109/TNNLS.2018.2868800.

P. Gokul and R. Rakkiyappan, “New finite-time stability for fractionalorder time-varying time-delay linear systems: A Lyapunov approach,” Journal of the Franklin Institute, vol. 359, pp. 7620–7631, 2022, doi: 10.1016/j.jfranklin.2022.07.036.

H. Xu, “Finite-time stability analysis: A tutorial survey,” Hindawi Complexity, vol. 2020, pp. 1-12, 2020, doi: 10.1155/2020/1941636.

K. Mayar, D. G. Carmichael, and X. Shen, “Stability and resilienceA systematic approach,” Buildings, vol. 12, no. 8, p. 1242, 2022, doi:10.3390/buildings12081242.

F. A. Miranda-Villatoro, F. Castanos, and B. Brogliato, “Finite-time ˜ convergent discrete-time algorithms: From explicit to backward schemes,” HAL open science, pp. 1-13, 2024.

A. Ouannas, X. Wang, V. T. Pham, G. Grassi, and V. V. Huynh, “Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach,” Boundary Value Problems, pp. 1-12, 2019, doi: 10.1186/s13661-019-1188-y.

A. Ghosh, “Measure synchronization in interacting Hamiltonian systems: A brief review,” Chaos Solitons Fractals, vol. 177, 2023, doi: 10.1016/j.chaos.2023.114237.

A. Ouannas, S. Bendoukha, C. Volos, N. Boumaza, and A. Karouma, “Synchronization of fractional hyperchaotic Rabinovich systems via linear and nonlinear control with an application to secure communications,” International Journal of Control, Automation and Systems, vol. 17, pp. 2211-2219, 2019, doi: 10.1007/s12555-018-0216-5.

A. T. Vadakkan, U. K. Verma, and G. Ambika, “Recovery of synchronized oscillations on multiplex networks by tuning dynamical time scales,” arXiv, 2024, doi: 10.48550/arXiv.2407.00368.

I. Bendib, I. M. Batiha, A. Hioual, N. Anakira, M. Dalah, and A. Ouannas, “On a new version of the Gierer-Meinhardt model using fractional discrete calculus,” Results in Nonlinear Analysis, vol. 7, no. 2, pp. 1-15, 2024, doi: 10.31838/rna/2024.07.02.001.

T. Azizi and G. Kerr, “Chaos synchronization in discrete-time dynamical systems with application in population dynamics,” Journal of Applied Mathematics and Physics, vol. 8, pp. 406-423, 2020, doi: 10.4236/jamp.2020.83031.

M. M. Hussain, M. Siddique, Z. M. Almohaimeed, R. Shamshad, R. Akram, and N. Aslam, “Synchronization of chaotic systems: A generic nonlinear integrated observer-based approach,” Hindawi Complexity, vol. 2021, pp. 1-16, 2021, doi: 10.1155/2021/4558400.

A. Tarammim and M. T. Akter, “A comparative study of synchronization methods of Rucklidge chaotic systems with design of active control and backstepping methods,” International Journal of Modern Nonlinear Theory and Application, vol. 11, pp. 31-51, 2022, doi: 10.4236/ijmnta.2022.112003.

A. Ouannas, F. Mesdoui, S. Momani, I. Batiha, and G. Grassi, “Synchronization of FitzHugh-Nagumo reaction-diffusion systems via onedimensional linear control law,” Archives of Control Sciences, vol. 31, no. 2, pp. 333-345, 2021. doi: 10.24425/acs.2021.

M. Haris, M. Shafiq, I. Ahmad, Z. Ali, G. Manickam, and A. Ghaffar, “A time-efficient nonlinear control method for the hyperchaotic finance system synchronization,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 35, no. 2, pp. 834-843, 2024, doi: 10.11591/ijeecs.v35.i2.pp834-843.

L. V. Gambuzza, F. Di Patti, L. Gallo, S. Lepri, M. Romance, R. Criado, M. Frasca, V. Latora, and S. Boccaletti, “Stability of synchronization in simplicial complexes,” Nature Communications, 2021, doi: 10.1038/s41467-021-21486-9.

Y. Chu, X. Han, and R. Rakkiyappan, “Finite-time lag synchronization for two-layer complex networks with impulsive effects,” Mathematical Modelling and Control, vol. 4, no. 1, pp. 71-85, 2024, doi: 10.3934/mmc.2024007.

P. Anand and B. B. Sharma, “Generalized finite-time synchronization scheme for a class of nonlinear systems using backstepping-like control strategy,” International Journal of Dynamics and Control, vol. 11, pp. 258-270, 2022, doi: 10.1007/s40435-022-00948-y.

S. A. Pawar, M. P. Raghunath, R. K. Valappil, A. Krishnan, K. Manoj, and R. I. Sujith, “Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability,” Chaos, vol. 34, no. 5, 2024, doi: 10.1063/5.0176809.

H. H. Jafri, T. Umeshkanta Singh, and K. Manchanda, “Revisiting generalized synchronization: Progress and perspectives,” Indian Academy of Sciences Conference Series, vol. 2, no. 1, 2019, doi: 10.29195/iascs.02.01.0006.

Y. Ma and Y. Tai, “Finite-time synchronization for heterogeneous complex networks with time-varying delays,” Applied Mathematics, vol. 11, pp. 1000-1012, 2020, doi: 10.4236/am.2020.1110066.

J. Li and J. Zheng, “Finite-time synchronization of different dimensional chaotic systems with uncertain parameters and external disturbances,” Scientific Reports, vol. 12, no. 15407, 2022, doi: 10.1038/s41598-022-19659-7.

S. Shanmugam, R. Vadivel, and N. Gunasekaran, “Finite-time synchronization of quantized Markovian-jump time-varying delayed neural networks via an event-triggered control scheme under actuator saturation,” Mathematics, vol. 11, no. 10, p. 2257, 2023, doi: 10.3390/math11102257.

S. Lall, C. Cas¸caval, M. Izzard and T. Spalink, “Logical Synchrony and the Bittide Mechanism,” in IEEE Transactions on Parallel and Distributed Systems, vol. 35, no. 11, pp. 1936-1948, 2024, doi: 10.1109/TPDS.2024.3444739.

W. Xia, Y. Luo, and B. Zhou, “Finite-time synchronization of a class of N-coupled complex partial differential systems with time-varying delay,” Mathematical Methods in the Applied Sciences, vol. 42, no. 18, pp. 7233- 7242, 2019, doi: 10.1002/mma.5832.

Z. Li, “Fixed-time and finite-time synchronization for a class of outputcoupling complex networks via continuous control,” International Journal of Communications, Network and System Sciences, vol. 12, no. 10, 2019, doi: 10.4236/ijcns.2019.1210011.

Q. Xi, X. Liu and X. Li, “Finite-Time Synchronization of Complex Dynamical Networks via a Novel Hybrid Controller,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 1040-1049, 2024, doi: 10.1109/TNNLS.2022.3185490.

L. M. Pecora and T. L. Carroll, “Synchronization of chaotic systems,” Chaos, vol. 25, no. 9, 2015, doi: 10.1063/1.4917383.

D. Tong, B. Ma, Q. Chen, Y. Wei and P. Shi, “Finite-Time Synchronization and Energy Consumption Prediction for Multilayer Fractional-Order Networks,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 6, pp. 2176-2180, 2023, doi: 10.1109/TCSII.2022.3233420.

O. A. Almatrouda, I. Bendibb, A. Hioualc, and A. Ouannasd, “On stability of a reaction-diffusion system described by difference equations,” Journal of Difference Equations and Applications, 2024, doi: 10.1080/10236198.2024.2322728.

N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, and V. T. Pham, “On the stability of linear incommensurate fractional-order difference systems,” Mathematics, vol. 8, no. 10, p. 1754, 2020, doi: 10.3390/math8101754.

A. Hioual, T. E. Oussaeif, A. Ouannas, G. Grassi, I. M. Batiha, and S. Momani, “New results for the stability of fractional-order discrete-time neural networks,” Alexandria Engineering Journal, vol. 61, no. 12, pp. 10359-10369, 2022, doi: 10.1016/j.aej.2022.03.062.

R. Saadeh, A. Abbes, A. Al-Husban, A. Ouannas, and G. Grassi, “The Fractional Discrete Predator-Prey Model: Chaos, Control and Synchronization,” Fractal Fractional, vol. 7, no. 2, p. 120, 2023, doi: 10.3390/fractalfract7020120.

T. E. Oussaeif, B. Antara, A. Ouannas, I. M. Batiha, K. M. Saad, and H. Jahanshahi, “Existence and uniqueness of the solution for an inverse problem of a fractional diffusion equation with integral condition,” Journal of Function Spaces, vol. 2022, 2022, doi: 10.1155/2022/7667370.

N. Debbouche, A. O. Almatroud, A. Ouannas, and I. M. Batiha, “Chaos and coexisting attractors in glucose-insulin regulatory system with Incommensurate fractional-order derivative,” Chaos Solitons Fractals, vol. 143, p. 110, 2021, doi: 10.1016/j.chaos.2020.110575.

M. T. Shatnawi, N. Djenina, A. Ouannas, I. M. Batiha, and G. Grassi, “Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems,” Alexandria Engineering Journal, vol. 61, no. 2, pp. 1655-1663, 2022, doi: 10.1016/j.aej.2021.06.073.

I. Ahead, A. Ouannas, M. Shafiq, V. T. Pham, and D. Baleanu, “Finitetime stabilization of a perturbed chaotic finance model,” Journal of Advanced Research, vol. 32, pp. 1-14, 2021, doi: 10.1016/j.jare.2021.06.013.

A. A. Khennaoui, A. O. Almatroud, A. Ouannas, M. M. Al-sawalha, and G. Grassi, “An unprecedented 2-dimensional discrete-time fractionalorder system and its hidden chaotic attractors,” Mathematical Problems in Engineering, vol. 2021, pp. 1-10, 2021, doi: 10.1155/2021/6768215.

N. Debbouche, A. Ouannas, I. M. Batiha, G. Grassi, and M. K. A. Kaabar, “Chaotic behavior analysis of a new Incommensurate fractional-order Hopfield neural network system,” Complexity, vol. 2021, pp. 1-11, 2021, doi: 10.1155/2021/3394666.

A. Abbes, A. Ouannas, N. Shawagfeh, and H. Jahanshahi, “The fractionalorder discrete COVID-19 pandemic model: stability and chaos,” Nonlinear Dynamics, vol. 111, no. 1, pp. 965-983, 2023, doi: 10.1007/s11071-022-07766-z.

A. Ouannas, A. A. Khennaoui, S. Momani, and V. T. Pham, “The discrete fractional Duffing system: Chaos, 0-1 test, C complexity, entropy, and control,” Chaos, vol. 30, no. 8, p. 2020, 2020, doi: 10.1063/5.0005059.

A. Ouannas, I. M. Batiha, S. Bekiros, J. Liu, H. Jahanshahi, A. A. Aly, and A. H. Alghtani, “Synchronization of the glycolysis reaction-diffusion model via linear control law,” Entropy, vol. 23, no. 11, p. 1516, 2020, doi: 10.3390/e23111516.

S. Gao, L. Chang, I. Romi, Z. Wang, and M. Jusup, “Optimal control of networked reaction-diffusion systems,” Journal of The Royal Society Interface, vol. 19, no. 188, 2022, doi: 10.1098/rsif.2021.0739.

K. B. Messaoud, Y. Wang, P. Jiang, Z. Ma, K. Hou, and F. Dai, “Spatial-Temporal Dynamics of Urban Green Spaces in Response to Rapid Urbanization and Urban Expansion in Tunis between 2000 and 2020,” Land, vol. 13, no. 1, 2024, doi: 10.3390/land13010098.

A. Hioual, A. Ouannas, T. E. Oussaeif, G. Grassi, I. M. Batiha, and S. Momani, “On variable-order fractional discrete neural network: solvability and stability,” Fractal Fractional, vol. 6, no. 2, 2022, doi:10.3390/fractalfract6020119.

A. Ouannas, A. A. Khennaoui, X. Wang, V. T. Pham, S. Boulaaras, and S. Momani, “Bifurcation and chaos in the fractional form of Henon-Lozi ´ type map,” The European Physical Journal Special Topics, vol. 229, pp. 2261-2273, 2020, doi: 10.1140/epjst/e2020-900193-4.

M. Abu Hammad, I. Bendib, W. G. Alshanti, A. Alshanty, A. Ouannas, A. Hioual, and S. Momani, “Fractional-Order Degn?Harrison ReactionDiffusion Model: Finite-Time Dynamics of Stability and Synchronization,” Computation, vol. 12, no. 1, 2023, doi: 10.3390/computation12070144.

I. M. Batiha, O. Ogilat, I. Bendib, A. Ouannas, I. H. Jebril, and N. Anakira, “Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations,” Chaos, Solitons & Fractals: X, vol. 13, 2024, doi: 10.1016/j.csfx.2024.100118.

Y. Luo and Y. Yao, “Finite-time synchronization of uncertain complex dynamic networks with time-varying delay,” Advances in Difference Equations, vol. 2020, no. 32, 2020, doi: 10.1186/s13662-020-2508-3.

G. Arthi and N. Brindha, “On finite-time stability of nonlinear fractionalorder systems with impulses and multi-state time delays,” Results in Control and Optimization, vol. 2, 2021, doi: 10.1016/j.rico.2021.100010.

M. O. Gani, M. H. Kabir, and T. Ogawa, “Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh?Nagumo Model of Nerve Cell Dynamics,” Bulletin of Mathematical Biology, vol. 84, no. 145, 2022, doi: 10.1007/s11538-022-01100-9.

S. Shahid, M. Abbas, and E. Kwessi, “Nonstandard Nearly Exact Analysis of the FitzHugh?Nagumo Model,” Symmetry, vol. 16, no. 5, 2024, doi: 10.3390/sym16050585.

W. Hu, “Stochastic finite-time stability for stochastic nonlinear systems with stochastic impulses,” Symmetry, vol. 14, no. 4, 2022, doi: 10.3390/sym14040817.

H. Xu, “Finite-time stability analysis: A tutorial survey,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/1941636.

B. Brentan, P. Rezende, D. Barros, G. Meirelles, E. Luvizotto Jr., and J. Izquierdo, “Cyber-attack detection in water distribution systems based on blind sources separation technique,” Water, vol. 13, 2021, doi: 10.3390/w13060795.

G. Arthi and N. Brindha, “On finite-time stability of nonlinear fractionalorder systems with impulses and multi-state time delays,” Results in Control and Optimization, vol. 2, 2021, doi: 10.1016/j.rico.2021.100010.

R. Rao, Z. Lin, X. Ai, and J. Wu, “Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse,” Mathematics, vol. 10, no. 12, 2022, doi: 10.3390/math10122064.

F. Mesdoui, A. Ouannas, N. Shawagfeh, G. Grassi, and V.-T. Pham, “Synchronization methods for the Degn-Harrison reaction-diffusion systems,” IEEE Access, vol. 8, pp. 91829-91836, 2020, doi: 10.1109/ACCESS.2020.2993784.

A. Ouannas, M. Abdelli, Z. Odibat, X. Wang, V.-T. Pham, G. Grassi, and A. Alsaedi, “Synchronization control in reaction-diffusion systems: Application to Lengyel-Epstein system,” Complexity, vol. 2019, 2019, doi: 10.1155/2019/2832781.

T. Hamadneh, A. Hioual, O. Alsayyed, Y. A. Al-Khassawneh, A. AlHusban, and A. Ouannas, “The FitzHugh-Nagumo model described by fractional difference equations: Stability and numerical simulation,” Axioms, vol. 12, no. 9, 2023, doi: 10.3390/axioms12090806.

Y. Zhang and Y. Qiao, “The multistability of delayed competitive neural networks with piecewise non-monotonic activation functions,” Mathematical Methods in the Applied Sciences, vol. 45, no. 16, pp. 10295-10311, 2022, doi: 10.1002/mma.8368.

J. Li and J. Zheng, “Finite-time synchronization of different dimensional chaotic systems with uncertain parameters and external disturbances,” Scientific Reports, vol. 12, no. 15407, 2022, doi: 10.1038/s41598-022-19659-7.

L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-end Autonomous Driving: Challenges and Frontiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 1, no. 20, pp. 1-20, 2024, doi: 10.1109/TPAMI.2024.3435937.

D. Garikapati and S. S. Shetiya, “Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape,” Big Data Cogn. Comput., vol. 8, no. 4, 2024, doi: 10.3390/bdcc8040042.

C. Chantawat and T. Botmart, “Finite-time H∞ synchronization control for coronary artery chaos system with input and state timevarying delays,” PLoS ONE, vol. 17, no. 4, 2022, doi: 10.1371/journal.pone.0266706.

Y. Liu and Y. Sun, “Finite-Time Adaptive Synchronization and FixedTime Synchronization of Fractional-Order Memristive Cellular Neural Networks with Time-Varying Delays,” Mathematics, vol. 12, no. 7, 2024, doi: 10.3390/math12071108.

F. W. Alsaade, M. S. Al-Zahrani, Q. Yao, and H. Jahanshahi, “A ModelFree Finite-Time Control Technique for Synchronization of Variable Order Fractional Hopfield-like Neural Network,” Fractal Fract., vol. 7, no. 5, 2023, doi: 10.3390/fractalfract7050349.

R. Tang, S. Yuan, X. Yang, P. Shi, and Z. Xiang, “Finite-time synchronization of intermittently controlled reaction–diffusion systems with delays: A weighted LKF method,” Communications in Nonlinear Science and Numerical Simulation, vol. 127, 2023, doi: 10.1016/j.cnsns.2023.107571.

Q. Qiu and H. Su, “Finite-Time Output Synchronization of Multiple Weighted Reaction–Diffusion Neural Networks With Adaptive Output Couplings,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 169-181, 2024, doi: 10.1109/TNNLS.2022.3172490.

M. S. Ali, L. Palanisamy, N. Gunasekaran, A. Alsaedi, and B. Ahmad, “Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks,” Discrete and Continuous Dynamical Systems-S, vol. 14, no. 4, pp. 1465-1477, 2021, doi: 10.3934/dcdss.2020395.

X. Song, J. Man, J. H. Park, and S. Song, “Finite-Time Synchronization of Reaction-Diffusion Inertial Memristive Neural Networks via GainScheduled Pinning Control,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 5045-5056, 2022, doi: 10.1109/TNNLS.2021.3068734.

Z. Feng and Z. Xiang, “Finite-time stability of fractional-order nonlinear systems,” Chaos, vol. 34, 2024, doi: 10.1063/5.0170419.

L. Wang, X. Yang, H. Liu, and X. Chen, “Synchronization in finite time of fractional-order complex-valued delayed gene regulatory networks,” Fractal and Fractional, vol. 7, 2023, doi: 10.3390/fractalfract7050347.




DOI: https://doi.org/10.18196/jrc.v5i6.23211

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Iqbal M. Batiha, Issam Bendib, Adel Ouannas, Iqbal H. Jebril, Shawkat Alkhazaleh, Shaher Momani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik