Performance Analysis of PID and SMC Control Algorithms on AUV under the Influence of Internal Solitary Wave in the Bali Deep Sea
Abstract
Keywords
Full Text:
PDFReferences
K. L. C. Bell et al., “Exposing inequities in deep-sea exploration and research: results of the 2022 Global Deep-Sea Capacity Assessment,” Front. Mar. Sci., vol. 10, Aug. 2023, doi: 10.3389/fmars.2023.1217227.
D. L. McLean et al., “Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans,” Front. Mar. Sci., vol. 7, Apr. 2020, doi: 10.3389/fmars.2020.00220.
D. J. Amon et al., “My Deep Sea, My Backyard: a pilot study to build capacity for global deep-ocean exploration and research,” Philos. Trans. R. Soc. B Biol. Sci., vol. 377, no. 1854, Jul. 2022, doi: 10.1098/rstb.2021.0121.
O. A. Aguirre-Castro et al., “Design and Construction of an ROV for Underwater Exploration,” Sensors, vol. 19, no. 24, p. 5387, Dec. 2019, doi: 10.3390/s19245387.
E. I. van Putten et al., “History matters: societal acceptance of deep-sea mining and incipient conflicts in Papua New Guinea,” Marit. Stud., vol. 22, no. 3, p. 32, Sep. 2023, doi: 10.1007/s40152-023-00318-0.
M. Vigo et al., “ROV-based monitoring of passive ecological recovery in a deep-sea no-take fishery reserve,” Sci. Total Environ., vol. 883, p. 163339, Jul. 2023, doi: 10.1016/j.scitotenv.2023.163339.
Y. Zhang et al., “Characteristics of Internal Solitary Waves in the Timor Sea Observed by SAR Satellite,” Remote Sens., vol. 15, no. 11, p. 2878, Jun. 2023, doi: 10.3390/rs15112878.
X. Huang et al., “An extreme internal solitary wave event observed in the northern South China Sea,” Sci. Rep., vol. 6, no. 1, p. 30041, Jul. 2016, doi: 10.1038/srep30041.
I. W. G. A. Karang, Chonnaniyah, and T. Osawa, “Internal solitary wave observations in the Flores Sea using the Himawari-8 geostationary satellite,” Int. J. Remote Sens., vol. 41, no. 15, pp. 5726–5742, Aug. 2020, doi: 10.1080/01431161.2019.1693079.
F. Syamsudin et al., “Observing Internal Solitary Waves in the Lombok Strait by Coastal Acoustic Tomography,” Geophys. Res. Lett., vol. 46, no. 17–18, pp. 10475–10483, Sep. 2019, doi: 10.1029/2019GL084595.
B. Zhao et al., “Internal solitary waves generated by a moving bottom disturbance,” J. Fluid Mech., vol. 963, p. A32, May 2023, doi: 10.1017/jfm.2023.355.
L. Sun et al., “Internal solitary waves in the central Andaman sea observed by combining mooring data and satellite remote sensing,” Cont. Shelf Res., vol. 277, p. 105249, Jun. 2024, doi: 10.1016/j.csr.2024.105249.
S. Liu et al., “Multi-Parameter Influence Analysis of Interaction Between Internal Solitary Wave and Fixed Submerged Body,” China Ocean Eng., vol. 37, no. 6, pp. 934–947, Dec. 2023, doi: 10.1007/s13344-023-0078-3.
Z. Bingul and K. Gul, “Intelligent-PID with PD Feedforward Trajectory Tracking Control of an Autonomous Underwater Vehicle,” Machines, vol. 11, no. 2, p. 300, Feb. 2023, doi: 10.3390/machines11020300.
Y. Wang, Y. Hou, Z. Lai, L. Cao, W. Hong, and D. Wu, “An adaptive PID controller for path following of autonomous underwater vehicle based on Soft Actor–Critic,” Ocean Eng., vol. 307, p. 118171, Sep. 2024, doi: 10.1016/j.oceaneng.2024.118171.
J. Guerrero, J. Torres, V. Creuze, A. Chemori, and E. Campos, “Saturation based nonlinear PID control for underwater vehicles: Design, stability analysis and experiments,” Mechatronics, vol. 61, pp. 96–105, 2019, doi: 10.1016/j.mechatronics.2019.06.006.
P. V. Patil, M. K. Khan, M. Korulla, V. Nagarajan, and O. P. Sha, “Design optimization of an AUV for performing depth control maneuver,” Ocean Eng., vol. 266, no. 5, 2022, doi: 10.1016/j.oceaneng.2022.112929.
M. T. Muhssin, M. N. Ajaweed, and S. K. Khalaf, “Optimal control of underwater vehicle using LQR controller driven by new matrix decision control algorithm,” Int. J. Dyn. Control, vol. 11, no. 6, pp. 2911–2923, Dec. 2023, doi: 10.1007/s40435-023-01186-6.
A. Sir Elkhatem and S. Naci Engin, “Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control,” Alexandria Eng. J., vol. 61, no. 8, pp. 6275–6292, Aug. 2022, doi: 10.1016/j.aej.2021.11.057.
Y. Duan, X. Xiang, C. Liu, and L. Yang, “Double-loop LQR depth tracking control of underactuated AUV: Methodology and comparative experiments,” Ocean Eng., vol. 300, p. 117410, May 2024, doi: 10.1016/j.oceaneng.2024.117410.
Q. Zhu, H. Shang, X. Lu, and Y. Chen, “Adaptive sliding mode tracking control of underwater vehicle-manipulator systems considering dynamic disturbance,” Ocean Eng., vol. 291, p. 116300, Jan. 2024, doi: 10.1016/j.oceaneng.2023.116300.
Y. Sun, P. Chai, G. Zhang, T. Zhou, and H. Zheng, “Sliding Mode Motion Control for AUV with Dual-Observer Considering Thruster Uncertainty,” J. Mar. Sci. Eng., vol. 10, no. 3, p. 349, Mar. 2022, doi: 10.3390/jmse10030349.
D. Wang et al., “Sliding mode heading control for AUV based on continuous hybrid model-free and model-based reinforcement learning,” Appl. Ocean Res., vol. 118, p. 102960, Jan. 2022, doi: 10.1016/j.apor.2021.102960.
H.-H. Kim, M. C. Lee, H.-J. Cho, J.-H. Hwang, and J.-S. Won, “SMCSPO-Based Robust Control of AUV in Underwater Environments including Disturbances,” Appl. Sci., vol. 11, no. 22, p. 10978, Nov. 2021, doi: 10.3390/app112210978.
A. Sahoo, S. K. Dwivedy, and P. S. Robi, “Adaptive Fuzzy PID Controller for A Compact Autonomous Underwater Vehicle,” in Global Oceans 2020: Singapore – U.S. Gulf Coast, pp. 1–6, 2020, doi: 10.1109/IEEECONF38699.2020.9389483.
T. Liu, J. Zhao, J. Huang, Z. Li, L. Xu, and B. Zhao, “Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling,” Ocean Eng., vol. 304, p. 117844, Jul. 2024, doi: 10.1016/j.oceaneng.2024.117844.
J. Yao, J. Yang, C. Zhang, J. Zhang, and T. Zhang, “Autonomous Underwater Vehicle Trajectory Prediction with the Nonlinear Kepler Optimization Algorithm–Bidirectional Long Short-Term Memory–Time-Variable Attention Model,” J. Mar. Sci. Eng., vol. 12, no. 7, p. 1115, Jul. 2024, doi: 10.3390/jmse12071115.
J. Zheng, L. Song, L. Liu, W. Yu, Y. Wang, and C. Chen, “Fixed-time sliding mode tracking control for autonomous underwater vehicles,” Appl. Ocean Res., vol. 117, p. 102928, Dec. 2021, doi: 10.1016/j.apor.2021.102928.
B. Li, X. Gao, H. Huang, and H. Yang, “Improved adaptive twisting sliding mode control for trajectory tracking of an AUV subject to uncertainties,” Ocean Eng., vol. 297, p. 116204, Apr. 2024, doi: 10.1016/j.oceaneng.2023.116204.
L. Ibarra, A. Rosales, P. Ponce, and A. Molina, “Adaptive SMC based on the dynamic containment of the sliding variable,” J. Franklin Inst., vol. 358, no. 2, pp. 1422–1447, Jan. 2021, doi: 10.1016/j.jfranklin.2020.12.005.
H. Chen, G. Tang, S. Wang, W. Guo, and H. Huang, “Adaptive fixed-time backstepping control for three-dimensional trajectory tracking of underactuated autonomous underwater vehicles,” Ocean Eng., vol. 275, p. 114109, May 2023, doi: 10.1016/j.oceaneng.2023.114109.
Y. Peng, L. Guo, and Q. Meng, “Backstepping Control Strategy of an Autonomous Underwater Vehicle Based on Probability Gain,” Mathematics, vol. 10, no. 21, p. 3958, Oct. 2022, doi: 10.3390/math10213958.
S. An, L. Wang, and Y. He, “Robust fixed-time tracking control for underactuated AUVs based on fixed-time disturbance observer,” Ocean Eng., vol. 266, p. 112567, Dec. 2022, doi: 10.1016/j.oceaneng.2022.112567.
M. Bjaoui, B. Khiari, R. Benadli, M. Memni, and A. Sellami, “Practical Implementation of the Backstepping Sliding Mode Controller MPPT for a PV-Storage Application,” Energies, vol. 12, no. 18, p. 3539, Sep. 2019, doi: 10.3390/en12183539.
Y. Liu, F. Li, and B. Sun, “Self-Tuning Backstepping Control with Kalman-like Filter for High-Precision Control of Automotive Electronic Throttle,” Electronics, vol. 12, no. 13, p. 2938, Jul. 2023, doi: 10.3390/electronics12132938.
J. Na, Y. Li, Y. Huang, G. Gao, and Q. Chen, “Output Feedback Control of Uncertain Hydraulic Servo Systems,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 490–500, Jan. 2020, doi: 10.1109/TIE.2019.2897545.
T. Wang, X. Huang, W. Zhao, S. Zheng, Y. Yang, and J. Tian, “Internal Solitary Wave Activities near the Indonesian Submarine Wreck Site Inferred from Satellite Images,” J. Mar. Sci. Eng., vol. 10, no. 2, p. 197, Feb. 2022, doi: 10.3390/jmse10020197.
Y. Stepanyants, “How internal waves could lead to wreck American and Indonesian submarines?,” arXiv preprint arXiv:2107.00828, 2021.
Y.-Y. Chen, C.-Y. Lee, Y.-X. Huang, and T.-T. Yu, “Control Allocation Design for Torpedo-Like Underwater Vehicles with Multiple Actuators,” Actuators, vol. 11, no. 4, p. 104, Mar. 2022, doi: 10.3390/act11040104.
R. Gabl et al., “Hydrodynamic loads on a restrained ROV under waves and current,” Ocean Eng., vol. 234, p. 109279, Aug. 2021, doi: 10.1016/j.oceaneng.2021.109279.
S. Heshmati-Alamdari, C. P. Bechlioulis, G. C. Karras, and K. J. Kyriakopoulos, “Cooperative Impedance Control for Multiple Underwater Vehicle Manipulator Systems Under Lean Communication,” IEEE J. Ocean. Eng., vol. 46, no. 2, pp. 447–465, Apr. 2021, doi: 10.1109/JOE.2020.2989603.
Z. Zhang, Q. Wang, and S. Zhang, “Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles,” Biomimetics, vol. 9, no. 2, p. 79, Jan. 2024, doi: 10.3390/biomimetics9020079.
S. Song, J. Kim, T. Kim, Y. Song, and S.-C. Yu, “Development of a Biomimetic Underwater Robot for Bottom Inspection of Marine Structures,” Int. J. Control. Autom. Syst., vol. 21, no. 12, pp. 4041–4056, Dec. 2023, doi: 10.1007/s12555-023-0250-9.
K. D. Wahyuadnyana, K. Indriawati, P. A. Darwito, A. N. Aufa, and H. Tnunay, “Comparative Numerical Analysis of Torpedo-Shaped and Cubic Symmetrical Autonomous Underwater Vehicles in the Context of Indonesian Marine Environments,” Math. Model. Eng. Probl., vol. 10, no. 6, Dec. 2023, doi: 10.18280/mmep.100601.
Blue Robotics, “Enabling Ocean Exploration.” Blue Robotics, [Online]. Available: https://bluerobotics.com/
E. G. Garrison et al., “‘Scouring for Prehistory’—An Opportunistic Methodology for Sea Floor Archaeology,” Heritage, vol. 7, no. 7, pp. 3417–3428, Jun. 2024, doi: 10.3390/heritage7070161.
Y. Cao, B. Li, Q. Li, A. A. Stokes, D. M. Ingram, and A. Kiprakis, “A Nonlinear Model Predictive Controller for Remotely Operated Underwater Vehicles With Disturbance Rejection,” IEEE Access, vol. 8, pp. 158622–158634, 2020, doi: 10.1109/ACCESS.2020.3020530.
Q. Li, Y. Cao, B. Li, D. M. Ingram, and A. Kiprakis, “Numerical Modelling and Experimental Testing of the Hydrodynamic Characteristics for an Open-Frame Remotely Operated Vehicle,” J. Mar. Sci. Eng., vol. 8, no. 9, p. 688, Sep. 2020, doi: 10.3390/jmse8090688.
T. I. Fossen, Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Norway: Marine Cybernetics, 2002.
T. I. Fossen, Handbook of marine craft hydrodynamics and motion control. Wiley, 2011.
J. Du, D. Zhou, and S. Arai, “Hybrid Layer of Improved Interfered Fluid Dynamic System and Nonlinear Model Predictive Control for Navigation and Control of Autonomous Underwater Vehicles,” J. Mar. Sci. Eng., vol. 11, no. 10, p. 2014, Oct. 2023, doi: 10.3390/jmse11102014.
M. von Benzon, F. F. Sørensen, E. Uth, J. Jouffroy, J. Liniger, and S. Pedersen, “An Open-Source Benchmark Simulator: Control of a BlueROV2 Underwater Robot,” J. Mar. Sci. Eng., vol. 10, no. 12, p. 1898, Dec. 2022, doi: 10.3390/jmse10121898.
M. Folley, “The Wave Energy Resource,” in Handbook of Ocean Wave Energy, 7th ed., Ocean Engineering & Oceanograhy, pp. 43–79, 2017, doi: 10.1007/978-3-319-39889-1_3.
G. O. Abessolo et al., “Wave influence on altimetry sea level at the coast,” Coast. Eng., vol. 180, p. 104275, Mar. 2023, doi: 10.1016/j.coastaleng.2022.104275.
P. V Khalishah, Y. Naulita, and U. Hernawan, “Characteristics of North Pacific water masses in the Bali Sea,” IOP Conf. Ser. Earth Environ. Sci., vol. 1251, no. 1, p. 012039, Oct. 2023, doi: 10.1088/1755-1315/1251/1/012039.
A. K. Mandal, M. Seemanth, and R. Ratheesh, “Characterization of internal solitary waves in the Andaman Sea and Arabian Sea using EOS-04 and sentinel observations,” Int. J. Remote Sens., vol. 45, no. 4, pp. 1201–1219, Feb. 2024, doi: 10.1080/01431161.2024.2307322.
P. Peng et al., “Analysis of the Differences in Internal Solitary Wave Characteristics Retrieved from Synthetic Aperture Radar Images under Different Background Environments in the Northern South China Sea,” Remote Sens., vol. 15, no. 14, p. 3624, Jul. 2023, doi: 10.3390/rs15143624.
Q. Gong, L. Chen, Y. Diao, X. Xiong, J. Sun, and X. Lv, “On the identification of internal solitary waves from moored observations in the northern South China Sea,” Sci. Rep., vol. 13, no. 1, p. 3133, Feb. 2023, doi: 10.1038/s41598-023-28565-5.
N. W. Asmoro, W. S. Pranowo, Nurhidayat, J. Setiyadi, A. I. Santoso, and I. W. Sumardana E Putra, “Analysis of internal wave in the Buru Island coastal waters, Banda Sea, Indonesia,” Kuwait J. Sci., vol. 51, no. 3, p. 100238, Jul. 2024, doi: 10.1016/j.kjs.2024.100238.
S. G. Hartharn-Evans, M. Stastna, and M. Carr, “Dense pulses formed from fissioning internal waves,” Environ. Fluid Mech., vol. 23, no. 2, pp. 389–405, Apr. 2023, doi: 10.1007/s10652-022-09894-x.
S. G. Hartharn‐Evans, M. Carr, and M. Stastna, “Interactions Between Internal Solitary Waves and Sea Ice,” J. Geophys. Res. Ocean., vol. 129, no. 1, Jan. 2024, doi: 10.1029/2023JC020175.
A. Katavouta, J. A. Polton, J. D. Harle, and J. T. Holt, “Effect of Tides on the Indonesian Seas Circulation and Their Role on the Volume, Heat and Salt Transports of the Indonesian Throughflow,” J. Geophys. Res. Ocean., vol. 127, no. 8, pp. 1–29, Aug. 2022, doi: 10.1029/2022JC018524.
M. R. Iskandar and T. Suga, “Change in Salinity of Indonesian Upper Water in the Southeastern Indian Ocean during Argo Period,” Heliyon, vol. 8, no. 9, p. e10430, Sep. 2022.
M. A. Wibowo et al., “Understanding the Mechanism of Currents through the Malacca Strait Study Case 2020 – 2022 : Mean state, Seasonal and Monthly Variation,” IOP Conf. Ser. Earth Environ. Sci., vol. 1118, no. 1, p. 012069, Dec. 2022, doi: 10.1088/1755-1315/1118/1/012069.
A. Latif, K. Shankar, and P. T. Nguyen, “Legged Fire Fighter Robot Movement Using PID,” J. Robot. Control, vol. 1, no. 1, 2020, doi: 10.18196/jrc.1104.
A. Latif, A. Z. Arfianto, H. A. Widodo, R. Rahim, and E. T.Helmy, “Motor DC PID System Regulator for Mini Conveyor Drive Based-on Matlab,” J. Robot. Control, vol. 1, no. 6, 2020, doi: 10.18196/jrc.1636.
M. Samuel, M. Mohamad, M. Hussein, and S. M. Saad, “Lane Keeping Maneuvers Using Proportional Integral Derivative (PID) and Model Predictive Control (MPC),” J. Robot. Control, vol. 2, no. 2, 2021, doi: 10.18196/jrc.2256.
F. Santoso, M. A. Garratt, and S. G. Anavatti, “Hybrid PD-Fuzzy and PD Controllers for Trajectory Tracking of a Quadrotor Unmanned Aerial Vehicle: Autopilot Designs and Real-Time Flight Tests,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 3, pp. 1817–1829, 2021, doi: 10.1109/TSMC.2019.2906320.
L. Bauersfeld, L. Spannagl, G. Ducard, and C. Onder, “MPC Flight Control for a Tilt-Rotor VTOL Aircraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 4, pp. 2395–2409, 2021, doi: 10.1109/TAES.2021.3061819.
N. Xuan-Mung and S. K. Hong, “Improved altitude control algorithm for quadcopter unmanned aerial vehicles,” Appl. Sci., vol. 9, no. 10, 2019, doi: 10.3390/app9102122.
H. Rios, R. Falcon, O. A. Gonzalez, and A. Dzul, “Continuous Sliding-Mode Control Strategies for Quadrotor Robust Tracking: Real-Time Application,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1264–1272, 2019, doi: 10.1109/TIE.2018.2831191.
N. Xuan-Mung, S. K. Hong, N. P. Nguyen, L. N. N. T. Ha, and T. L. Le, “Autonomous quadcopter precision landing onto a heaving platform: New method and experiment,” IEEE Access, vol. 8, pp. 167192–167202, 2020, doi: 10.1109/ACCESS.2020.3022881.
P. A. Darwito and K. D. Wahyuadnyana, “Performance Examinations of Quadrotor with Sliding Mode Control-Neural Network on Various Trajectory and Conditions,” Math. Model. Eng. Probl., vol. 9, no. 3, pp. 707–714, Jun. 2022, doi: 10.18280/mmep.090317.
K. D. Wahyuadnyana and P. A. Darwito, “Parallel Control System PD-SMCNN for Robust Autonomous Mini-Quadcopter,” in 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 244–249, 2022, doi: 10.1109/ISITIA56226.2022.9855371.
O. A. Somefun, K. Akingbade, and F. Dahunsi, “The dilemma of PID tuning,” Annu. Rev. Control, vol. 52, pp. 65–74, 2021, doi: 10.1016/j.arcontrol.2021.05.002.
R. S. Patil, S. P. Jadhav, and M. D. Patil, “Review of Intelligent and Nature-Inspired Algorithms-Based Methods for Tuning PID Controllers in Industrial Applications,” J. Robot. Control, vol. 5, no. 2, pp. 336–358, 2024, doi: 10.18196/jrc.v5i2.20850.
T. Hägglund, “The one-third rule for PI controller tuning,” Comput. Chem. Eng., vol. 127, pp. 25–30, Aug. 2019, doi: 10.1016/j.compchemeng.2019.03.027.
B. Brahmi, M. H. Laraki, A. Brahmi, M. Saad, and M. H. Rahman, “Improvement of sliding mode controller by using a new adaptive reaching law: Theory and experiment,” ISA Trans., vol. 97, pp. 261–268, Feb. 2020, doi: 10.1016/j.isatra.2019.08.010.
N. Xuan-Mung et al., “Novel gain-tuning for sliding mode control of second-order mechanical systems: theory and experiments,” Sci. Rep., vol. 13, no. 1, p. 10541, Jun. 2023, doi: 10.1038/s41598-023-37562-7.
S. Chen, D. Li, H. Tian, J. Hou, D. Ning, and Y. Gong, “Experimental study of the effect of internal waves on the rotational hydrodynamics of underwater vehicle,” Int. J. Nav. Archit. Ocean Eng., vol. 14, p. 100465, 2022, doi: 10.1016/j.ijnaoe.2022.100465.
L. Cheng et al., “Tuning control parameters of underwater vehicle to minimize the influence of internal solitary waves,” Ocean Eng., vol. 310, p. 118681, Oct. 2024, doi: 10.1016/j.oceaneng.2024.118681.
DOI: https://doi.org/10.18196/jrc.v5i6.23800
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Kadek Dwi Wahyuadnyana, Katherin Indriawati, Purwadi Agus Darwito, Ardyas Nur Aufa, Hilton Tnunay
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com