Numerical and Analytical Investigations of Fractional Self-Adjoint Equations and Fractional Sturm-Liouville Problems via Modified Conformable Operator

Authors

  • Ahmed Bouchenak University Mustapha Stambouli of Mascara
  • Iqbal M. Batiha Al Zaytoonah University of Jordan
  • Mazin Aljazzazi University of Jordan
  • Nidal Anakira Sohar University
  • Mohammad Odeh Philadelphia University
  • Rasha Ibrahim Hajaj University of Jordan

DOI:

https://doi.org/10.18196/jrc.v6i3.25818

Keywords:

Self Adjoint Equation, Sturm Liouville Problem, Eigenvalues, Eigenfunctions, Dependence, Orthogonality, Modified Conformable Operator, Initial Value Problem

Abstract

This paper introduces a new modified conformable operator and explores its properties in detail. The motivation for studying this operator lies in its potential applications in fractional calculus and differential equations. We analyze the self-adjoint modified conformable equation by discussing the existence and uniqueness solution in the two cases, homogeneous and non-homogeneous, and establish its connection to specific modified conformable initial value problems. Furthermore, we investigate the modified conformable Sturm-Liouville problem by determining its eigenvalues and corresponding eigenfunctions. Key theoretical results related to orthogonality and linear dependence are presented. To validate the theoretical findings, we provide numerical methods and illustrative examples, demonstrating the applicability of our approach. These results contribute to a deeper understanding of modified conformable operators and their role in mathematical physics and engineering.

References

N. R. Anakira et al., “An algorithm for solving linear and non-linear Volterra integro-differential equations,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 3, pp. 77–83, 2023, doi: 10.15849/IJASCA.231130.05.

G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, pp. 187-196, 2023, doi: 10.15849/IJASCA.230320.13.

M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and Its Applications, vol. 16, no. 3, pp. 294–306, 2024, doi: 10.15849/IJASCA.241130.16.

K. S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, 1993.

A. Atangana and D. Baleanu, “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model,” Thermal Science, vol. 20, no. 2, pp. 763–769, 2016, doi: 10.48550/arXiv.1602.03408.

M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Progress in Fractional Differentiation and Applications, vol. 1, no. 2, pp. 73–85, 2015, doi: 10.12785/pfda/010201.

I. M. Batiha, I. H. Jebril, and S. Alshorm, “Modified some n-point fractional formulae with Richardson extrapolation,” Modeling of Discrete and Continuous Systems: Ordinary, Partial and Fractional Derivatives, pp. 133–162, 2025, doi: 10.1007/978-981-97-8715-9 7.

S. Momani, I. M. Batiha, M. S. Hijazi, I. Bendib, A. Ouannas, and N. Anakira, “Fractional-order SEIR model for COVID-19: Finitetime stability analysis and numerical validation,” International Journal of Neutrosophic Science, vol. 26, no. 1, pp. 266–282, 2025, doi: 10.54216/IJNS.260123.

I. M. Batiha, H. O. Al-Khawaldeh, M. Almuzini, W. G. Alshanti, N. Anakira, and A. Amourah, “A fractional mathematical examination on breast cancer progression for the healthcare system of Jordan,” Communications in Mathematical Biology and Neuroscience, vol. 2025, 2025, doi: 10.28919/cmbn/9138.

S. Momani, I. M. Batiha, I. Bendib, A. Ouannas, A. Hioual, and D. Mohamed, “Examining finite-time behaviors in the fractional Gray-Scott model: Stability, synchronization, and simulation analysis,” International Journal of Cognitive Computing in Engineering, vol. 6, pp. 380–390, 2025, doi: 10.1016/j.ijcce.2025.02.004.

A. Boudjedour, I. Batiha, S. Boucetta, M. Dalah, K. Zennir, and A. Ouannas, “A finite difference method on uniform meshes for solving the timespace fractional advection-diffusion equation,” Gulf Journal of Mathematics, vol. 19, no. 1, pp. 156–168, 2025, doi: 10.56947/gjom.v19i1.2524.

R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65–70, 2014, doi: 10.1016/j.cam.2014.01.002.

A. Al-Nana, I. M. Batiha, I. H. Jebril, S. Alkhazaleh, and T. Abdeljawad, “Numerical solution of conformable fractional periodic boundary value problems by shifted Jacobi method,” Numerical Solution of Conformable Fractional Periodic Boundary Value Problems by Shifted Jacobi Method, vol. 10, no. 1, pp. 189–206, 2025, doi: 10.33889/IJMEMS.2025.10.1.011.

M. Aljazzazi, S. Fakhreddine, I. M. Batiha, I. H. Jebril, A. Bouchenak, and R. I. Hajaja, “Impulsive conformable evolution equations in Banach spaces with fractional semigroup,” Filomat, vol. 38, no. 26, pp. 9321– 9332, 2024.

M. Abu Hammad, I. H. Jebril, I. M. Batiha, and A. M. Dababneh, “Fractional Frobenius series solutions of confluent α-hypergeometric differential equation,” Progress in Fractional Differentiation and Applications, vol. 8, no. 2, pp. 297–304, 2022, doi: 10.18576/pfda/080209.

A. Bouchenak, “Generalization of fractional Laplace transform for higher order and its application,” Journal of Innovative Applied Mathematics and Computational Sciences, vol. 1, no. 1, pp. 79–92, 2021.

T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, vol. 279, pp. 77–66, 2015, doi: 10.1016/j.cam.2014.10.016.

R. Khalil, M. Al Horani, and M. Abu Hammad, “Geometric meaning of conformable derivative via fractional cords,” Journal of Mathematical and Computer Science, vol. 19, pp. 241–245, 2019, doi: 10.22436/jmcs.019.04.03.

A. Bouchenak, R. Khalil, and M. AlHorani, “Fractional Fourier series with separation of variables and its application on fractional differential equations,” WSEAS Transactions on Mathematics, vol. 20, pp. 461–469, 2021, doi: 10.37394/23206.2021.20.48.

A. Bushnaque, M. AlHorani, and R. Khalil, “Tensor product technique and atomic solution of fractional Bateman-Burger equation,” Journal of Mathematical and Computational Science, vol. 11, no. 1, pp. 330–336, 2021, doi: 10.28919/jmcs/5139.

J. Younis, B. Ahmed, M. Aljazzazi, R. Al Hejaj, and H. Aydi, “Existence and uniqueness study of the conformable Laplace transform,” Journal of Mathematics, vol. 2022, 2022, doi: 10.1155/2022/4554065.

A. Bouchenak, M. Al Horani, J. Younis, R. Khalil, and M. A. Abd El Salam, “Fractional Laplace transform for matrix-valued functions with applications,” Arab Journal of Basic and Applied Sciences, vol. 29, no. 1, pp. 330–336, 2022, doi: 10.1080/25765299.2022.2127458.

M. Aljazzazi, A. Bouchenak, S. Momani and M. Al-Smadi, “Elimination of the Nondifferentiation Problem and the Discontinuity Problem by the Conformable Definition,” 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1-5, 2023, doi: 10.1109/ICFDA58234.2023.10153259.

A. Bouchenak et al., “Atomic exact solution for some fractional partial differential equations in Banach spaces,” Partial Differential Equations in Applied Mathematics, vol. 9, 2024, doi: 10.1016/j.padiff.2024.100626.

W. O. Amrein, A. M. Hinz, and D. P. Pearson, Sturm-Liouville Theory, Birkhauser Basel, 2005, doi: 10.1007/3-7643-7359-8.

N. Levinson, “The inverse Sturm-Liouville problem,” Matematisk Tidsskrift. B, pp. 25–30, 1949.

H. Berestycki, “On some nonlinear Sturm-Liouville problems,” Journal of Differential Equations, vol. 26, no. 3, pp. 375–390, 1977.

M. H. Annaby and Z. S. Mansour, “Basic Sturm–Liouville problems,” Journal of Physics A: Mathematical and General, vol. 38, no. 17, 2005, doi: 10.1088/0305-4470/38/17/005.

M. Klimek and O. P. Agrawal, “Fractional Sturm–Liouville problem,” Computers and Mathematics with Applications, vol. 66, no. 5, pp. 795– 812, 2013.

D. R. Anderson and D. J. Ulness, “Newly defined conformable derivatives,” Advances in Dynamical Systems and Applications, vol. 10, no. 2, pp. 109–137, 2015.

A. Bouchenak et al., “Study and Analysis of the Second Order Constant Coefficients and Cauchy-Euler Equations via Modified Conformable Operator,” International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 794–812, 2025, doi: 10.31763/ijrcs.v5i2.1577.

Downloads

Published

2025-05-30

How to Cite

[1]
A. Bouchenak, I. M. Batiha, M. Aljazzazi, N. Anakira, M. Odeh, and R. I. Hajaj, “Numerical and Analytical Investigations of Fractional Self-Adjoint Equations and Fractional Sturm-Liouville Problems via Modified Conformable Operator”, J Robot Control (JRC), vol. 6, no. 3, pp. 1410–1424, May 2025.

Issue

Section

Articles