Unveiling the Predictive Power of Machine Learning and Deep Learning: A Comparative Study on Disease Diagnosis, Detection, and Mortality Risk in Healthcare

Authors

  • Daniel Santoso Universitas Kristen Satya Wacana
  • Asno Azzawagama Firdaus Universitas Qamarul Huda Badaruddin https://orcid.org/0009-0005-1564-6167
  • Muhajir Yunus Universitas Muhammadiyah Gorontalo
  • Muzakkir Pangri Universitas Muhammadiyah Sorong

DOI:

https://doi.org/10.18196/jrc.v6i4.26223

Keywords:

Challenges, DL, Future-Prospects, Healthcare, ML

Abstract

This study compares the roles of machine learning (ML) and deep learning (DL) in healthcare, focusing on their applications, challenges, and prospects. It addresses the increasing relevance of AI in public health systems and contributes a structured analysis of how ML and DL process different healthcare data types. A systematic literature review was conducted using sources from Google Scholar, Elsevier, Springer, IEEE, and MDPI, applying inclusion criteria based on relevance, publication quality, and recency (2018–2024). Article selection and synthesis using meta-analysis followed the PRISMA framework. The review identified four key application areas: (1) disease outbreak prediction, (2) disease forecasting, (3) disease diagnosis and detection, and (4) disease hotspot monitoring and mapping. ML techniques such as Random Forest and ensemble methods show high performance in handling structured data like patient records, whereas DL architectures like convolutional neural network (CNN) and long-short term memory (LSTM) are superior for unstructured data, including medical imaging and bio signals. Challenges common to both approaches include data quality issues, dataset bias, privacy concerns, and integration into existing healthcare infrastructures. Looking forward, promising directions include explainable AI (XAI), transfer learning, federated learning, and real-time data use from wearable and internet of things (IoT) devices. The study concludes that while ML and DL can significantly improve diagnosis, response to health threats, and resource allocation, maximizing their impact requires continuous cross-sector collaboration, transparency, and ethical governance.

References

J. Elvidge et al., “Consolidated Health Economic Evaluation Reporting Standards for Interventions That Use Artificial Intelligence (CHEERS-AI),” Value in Health, vol. 27, no. 9, pp. 1196–1205, Sep. 2024, doi: 10.1016/j.jval.2024.05.006.

M. Schaekermann et al., “Health equity assessment of machine learning performance (HEAL): a framework and dermatology AI model case study,” EClinicalMedicine, vol. 70, p. 102479, Apr. 2024, doi: 10.1016/j.eclinm.2024.102479.

F. Furizal, A. Ma’arif, D. Rifaldi, and A. A. Firdaus, “Comparison of Convolutional Neural Networks and Support Vector Machines on Medical Data: A Review,” International Journal of Robotics and Control Systems, vol. 4, no. 1, pp. 445–462, Apr. 2024, doi: 10.31763/ijrcs.v4i1.1375.

S. Srivastava, K. Kansal, S. Sai, and V. Chamola, “Secure cognitive health monitoring using a directed acyclic graph-based and AI-enhanced IoMT framework,” Digital Communications and Networks, Sep. 2024, doi: 10.1016/j.dcan.2024.08.014.

H. Qin, Y. Zhu, Y. Jiang, S. Luo, and C. Huang, “Examining the impact of personalization and carefulness in AI-generated health advice: Trust, adoption, and insights in online healthcare consultations experiments,” Technol Soc, vol. 79, p. 102726, Dec. 2024, doi: 10.1016/j.techsoc.2024.102726.

G. Jain, S. Pareek, and P. Carlbring, “Revealing the source: How awareness alters perceptions of AI and human-generated mental health responses,” Internet Interv, vol. 36, p. 100745, Jun. 2024, doi: 10.1016/j.invent.2024.100745.

M. T. Hossain, R. Afrin, and Mohd. A.-A. Biswas, “A Review on Attacks Against Artificial Intelligence (AI) and Their Defence Image Recognition and Generation Machine Learning, Artificial Intelligence,” Control Systems and Optimization Letters, vol. 2, no. 1, pp. 52–59, 2024.

D. F. Laistulloh, A. N. Handayani, R. A. Asmara, and P. Taw, “Convolutional Neural Network in Motion Detection for Physiotherapy Exercise Movement,” Knowledge Engineering and Data Science (KEDS), vol. 7, no. 1, pp. 27–39, Apr. 2024.

A. R. Ismail and M. S. S. Taseen, “Deep Learning Approach for Dental Anomalies X-ray Imaging using YOLOv8,” Knowledge Engineering and Data Science (KEDS), vol. 7, no. 2, p. 164175, Dec. 2024.

Y. Salim, A. P. Utami, A. R. Manga, H. Azis, and F. T. Admojo, “Optimal Strategy for Handling Unbalanced Medical Datasets: Performance Evaluation of K-NN Algorithm Using Sampling Techniques,” Knowledge Engineering and Data Science (KEDS), vol. 7, no. 2, pp. 176–186, Dec. 2024.

P. Esmaeilzadeh, M. Maddah, and T. Mirzaei, “Using AI chatbots (eg, CHATGPT) in seeking health-related information online: The case of a common ailment,” Computers in Human Behavior: Artificial Humans, vol. 3, p. 100127, 2025.

R. A. M. Pratama, K. I. Rachmadiansyah, and S. Sidharta, “Technique of Mental Health Issues Classification based on Machine Learning: Systematic Literature Review,” Procedia Comput Sci, vol. 227, pp. 137–146, 2023, doi: 10.1016/j.procs.2023.10.511.

M. A. Thomaidou, A. Patel, S. S. Xie, and C. M. Berryessa, “Machine learning analysis of a national sample of U.S. case law involving mental health evidence,” J Crim Justice, vol. 94, p. 102266, Sep. 2024, doi: 10.1016/j.jcrimjus.2024.102266.

M. Dorraki et al., “Improving Cardiovascular Disease Prediction With Machine Learning Using Mental Health Data,” JACC: Advances, vol. 3, no. 9, p. 101180, Sep. 2024, doi: 10.1016/j.jacadv.2024.101180.

M. R. Shoaib et al., “Improving Brain Tumor Classification: An Approach Integrating Pre-Trained CNN Models and Machine Learning Algorithms,” Heliyon, p. e33471, Jun. 2024, doi: 10.1016/j.heliyon.2024.e33471.

J. Guo et al., “Diagnostic performance of MRI-based radiomics models using machine learning approaches for the triple classification of parotid tumors,” Heliyon, vol. 10, no. 17, p. e36601, Sep. 2024, doi: 10.1016/j.heliyon.2024.e36601.

S. Matin Malakouti, M. Bagher Menhaj, and A. Abolfazl Suratgar, “Machine learning and transfer learning techniques for accurate brain tumor classification,” Clinical eHealth, vol. 7, pp. 106–119, Dec. 2024, doi: 10.1016/j.ceh.2024.08.001.

M. Yunus, M. K. Biddinika, and A. Fadlil, “Comparison of Machine Learning Algorithms for Stunting Classification,” Scientific Journal of Engineering Research, vol. 1, no. 2, pp. 64–70, Apr. 2025.

A. M. Nakib and S. J. Haque, “Semi-Supervised Learning for Retinal Disease Detection: A BIOMISA Study,” Scientific Journal of Engineering Research, vol. 1, no. 2, pp. 43–53, Apr. 2025.

A. Maulana et al., “Classification of Stunting in Toddlers using Naive Bayes Method and Decision Tree,” Indonesian Journal of Modern Science and Technology (IJMST), vol. 1, no. 1, pp. 28–33, Jan. 2025.

M. Abidin et al., “Classification of Heart (Cardiovascular) Disease using the SVM Method,” Indonesian Journal of Modern Science and Technology (IJMST), vol. 1, no. 1, pp. 9–15, Jan. 2025.

A. R. N. Habibi et al., “Diabetes Mellitus Disease Analysis using Support Vector Machines and K-Nearest Neighbor Methods,” Indonesian Journal of Modern Science and Technology (IJMST), vol. 1, no. 1, pp. 22–27, Jan. 2025.

A. K. Kimu, “A Comprehensive Review of Harnessing Bioinformatics in Biochemistry: A New Era of Data-Driven Discoveries and Applications,” Control Systems and Optimization Letters, vol. 3, no. 1, pp. 117–123, 2025.

H. Pesu et al., “Correlates of Plasma Citrulline, a Potential Marker of Enterocyte Mass, among Children with Stunting: A Cross-Sectional Study in Uganda,” J Nutr, vol. 154, no. 2, pp. 765–776, Feb. 2024, doi: 10.1016/j.tjnut.2023.12.027.

K. Sadler et al., “How Can Nutrition Research Better Reflect the Relationship Between Wasting and Stunting in Children? Learnings from the Wasting and Stunting Project,” J Nutr, vol. 152, no. 12, pp. 2645–2651, Dec. 2022, doi: 10.1093/jn/nxac091.

A. Hendy et al., “Unlocking Insights: Using Machine Learning to Identify Wasting and Risk Factors in Egyptian Children Under 5,” Nutrition, p. 112631, Nov. 2024, doi: 10.1016/j.nut.2024.112631.

Z. Senousy, M. M. Gaber, and M. M. Abdelsamea, “AUQantO: Actionable Uncertainty Quantification Optimization in deep learning architectures for medical image classification,” Appl Soft Comput, vol. 146, p. 110666, Oct. 2023, doi: 10.1016/j.asoc.2023.110666.

S. Das et al., “Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images,” Computer Modeling in Engineering & Sciences, vol. 141, no. 1, pp. 893–916, 2024, doi: 10.32604/cmes.2024.051856.

C. C. Ukwuoma et al., “Enhancing histopathological medical image classification for Early cancer diagnosis using deep learning and explainable AI – LIME & SHAP,” Biomed Signal Process Control, vol. 100, p. 107014, Feb. 2025, doi: 10.1016/j.bspc.2024.107014.

Z. Kong, M. Zhang, W. Zhu, Y. Yi, T. Wang, and B. Zhang, “Multi-modal data Alzheimer’s disease detection based on 3D convolution,” Biomed Signal Process Control, vol. 75, p. 103565, May 2022, doi: 10.1016/j.bspc.2022.103565.

J. Zhang, X. He, L. Qing, F. Gao, and B. Wang, “BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis,” Comput Methods Programs Biomed, vol. 217, p. 106676, Apr. 2022, doi: 10.1016/j.cmpb.2022.106676.

M. Liu, D. Cheng, K. Wang, and Y. Wang, “Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis,” Neuroinformatics, vol. 16, no. 3–4, pp. 295–308, Oct. 2018, doi: 10.1007/s12021-018-9370-4.

X. Qian et al., “Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning,” Nat Biomed Eng, vol. 5, no. 6, pp. 522–532, Apr. 2021, doi: 10.1038/s41551-021-00711-2.

M. U. Dalmiş et al., “Artificial Intelligence–Based Classification of Breast Lesions Imaged With a Multiparametric Breast MRI Protocol With Ultrafast DCE-MRI, T2, and DWI,” Invest Radiol, vol. 54, no. 6, pp. 325–332, Jun. 2019, doi: 10.1097/RLI.0000000000000544.

X. Qian et al., “A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network,” Eur Radiol, vol. 30, no. 5, pp. 3023–3033, May 2020, doi: 10.1007/s00330-019-06610-0.

M. H. Le et al., “Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks,” Phys Med Biol, vol. 62, no. 16, pp. 6497–6514, Jul. 2017, doi: 10.1088/1361-6560/aa7731.

A. Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks,” Proceedings of SPIE--the International Society for Optical Engineering, vol. 10134, p. 101342A, 2017.

X. Yang et al., “Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI,” Med Image Anal, vol. 42, pp. 212–227, Dec. 2017, doi: 10.1016/j.media.2017.08.006.

X. Huang et al., “Detecting glaucoma from multi-modal data using probabilistic deep learning,” Front Med (Lausanne), vol. 9, Sep. 2022, doi: 10.3389/fmed.2022.923096.

T. K. Yoo et al., “DeepPDT-Net: predicting the outcome of photodynamic therapy for chronic central serous chorioretinopathy using two-stage multimodal transfer learning,” Sci Rep, vol. 12, no. 1, p. 18689, Nov. 2022, doi: 10.1038/s41598-022-22984-6.

Y. Li et al., “Multimodal Information Fusion for Glaucoma and Diabetic Retinopathy Classification,” 2022, pp. 53–62. doi: 10.1007/978-3-031-16525-2_6.

M. I. Mazdadi, H. Saragih, I. Budiman, A. Farmadi, A. Tajali, and T. H. Saragih, “The Effectiveness of Data Imputations on Myocardial Infarction Complication Classification Using Machine Learning Approach with Hyperparameter Tuning,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 3, pp. 520–533, 2024, doi: 10.26555/jiteki.v10i3.29479.

S. M. A. Razzaq and B. I. Khaleel, “Using Artificial Intelligence Algorithms to Recognize Osteoporosis: A Review,” Jurnal Ilmiah Teknik Electronic komputer and Informatika (JITEKI), vol. 10, no. 4, pp. 789–802, 2024, doi: 10.26555/jiteki.v10i4.30352.

M. M. Dakwah, A. A. Firdaus, Furizal, and R. A. Faresta, “Sentiment Analysis on Marketplace in Indonesia using Support Vector Machine and Naïve Bayes Method,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 1, pp. 39–53, 2023, doi: 10.26555/jiteki.v10i1.28070.

S. A. Wijaya, R. Gunawan, R. A. Faresta, A. A. Firdaus, G. Diemesor, and Furizal, “A Bibliometric Analysis of Natural Language Processing and Classification: Trends, Impact, and Future Directions,” Scientific Journal of Engineering Research, vol. 1, no. 1, pp. 11–17, Jan. 2025.

A. Maslan and A. Hamid, “Malware Classification and Detection using Variations of Machine Learning Algorithm Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 11, no. 1, pp. 27–41, 2025, doi: 10.26555/jiteki.v11i1.30477.

K. Karthick, “Comprehensive Overview of Optimization Techniques in Machine Learning Training,” Control Systems and Optimization Letters, vol. 2, no. 1, pp. 23–27, 2024.

J. Gondohanindijo, E. Noersasongko, P. Pujiono, and M. Muljono, “Analysis Kernel and Feature: Impact on Classification Performance on Speech Emotion Using Machine Learning,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 3, pp. 507–519, Aug. 2024, doi: 10.26555/jiteki.v10i3.29022.

A. A. Firdaus, A. Yudhana, and I. Riadi, “Prediction of Presidential Election Results using Sentiment Analysis with Pre and Post Candidate Registration Data,” 2024.

J. Gondohanindijo, E. Noersasongko, P. Pujiono, and M. Muljono, “Analysis Kernel and Feature: Impact on Classification Performance on Speech Emotion Using Machine Learning,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 3, pp. 507–519, Aug. 2024, doi: 10.26555/jiteki.v10i3.29022.

S. R. Salsabila, S. Surono, I. Ibad, E. Prasetyo, A. Cahya Subrata, and A. Thobirin, “Machine Learning-Based Early Breast Cancer Detection Through Temperature and Color Skin with Non-Invasive Smart Device,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 4, pp. 775–788, 2024, doi: 10.26555/jiteki.v10i4.30340.

H. Liu et al., “Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator,” Int J Gen Med, vol. Volume 15, pp. 2271–2282, Mar. 2022, doi: 10.2147/IJGM.S347491.

H. E. Saroğlu et al., “Machine learning, IoT and 5G technologies for breast cancer studies: A review,” Alexandria Engineering Journal, vol. 89, pp. 210–223, Feb. 2024, doi: 10.1016/j.aej.2024.01.043.

J. R. Headrick, M. J. Parker, and A. D. Miller, “The Role of NLP and AI Tools in Mitigating Workforce Shortages in Healthcare,” Ann Thorac Surg, Feb. 2025, doi: 10.1016/j.athoracsur.2025.01.033.

S. Rawas, C. Tafran, D. AlSaeed, and N. Al-Ghreimil, “Transforming Healthcare: AI-NLP Fusion Framework for Precision Decision-Making and Personalized Care Optimization in the Era of IoMT,” Computers, Materials & Continua, vol. 81, no. 3, pp. 4575–4601, 2024, doi: 10.32604/cmc.2024.055307.

R. M. Reeves et al., “Adaptation of an NLP system to a new healthcare environment to identify social determinants of health,” J Biomed Inform, vol. 120, p. 103851, Aug. 2021, doi: 10.1016/j.jbi.2021.103851.

N. R et al., “Enhancing drug discovery and patient care through advanced analytics with the power of NLP and machine learning in pharmaceutical data interpretation,” SLAS Technol, vol. 31, p. 100238, Apr. 2025, doi: 10.1016/j.slast.2024.100238.

M. Y. Ridho and E. Yulianti, “From Text to Truth: Leveraging IndoBERT and Machine Learning Models for Hoax Detection in Indonesian News,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 3, pp. 544–555, Sep. 2024, doi: 10.26555/jiteki.v10i3.29450.

Furizal, A. B. Fawait, H. Maghfiroh, A. Ma’arif, A. A. Firdaus, and I. Suwarno, “Long Short-Term Memory vs Gated Recurrent Unit: A Literature Review on the Performance of Deep Learning Methods in Temperature Time Series Forecasting,” International Journal of Robotics and Control Systems, vol. 4, no. 3, pp. 1506–1526, 2024, doi: 10.31763/ijrcs.v4i3.1546.

W. Riyadi and J. Jasmir, “Comparative Analysis of Optimizer Effectiveness in GRU and CNN-GRU Models for Airport Traffic Prediction,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 3, pp. 580–593, Sep. 2024, doi: 10.26555/jiteki.v10i3.29659.

M. Salvi et al., “Explainability and uncertainty: Two sides of the same coin for enhancing the interpretability of deep learning models in healthcare,” Int J Med Inform, vol. 197, p. 105846, May 2025, doi: 10.1016/j.ijmedinf.2025.105846.

R. Ranjbarzadeh, A. Caputo, E. B. Tirkolaee, S. Jafarzadeh Ghoushchi, and M. Bendechache, “Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools,” Comput Biol Med, vol. 152, p. 106405, Jan. 2023, doi: 10.1016/j.compbiomed.2022.106405.

A. W. Anderson et al., “Independent External Validation of Artificial Intelligence Algorithms for Automated Interpretation of Screening Mammography: A Systematic Review,” Journal of the American College of Radiology, vol. 19, no. 2, pp. 259–273, Feb. 2022, doi: 10.1016/j.jacr.2021.11.008.

I.-S. Tzeng, P.-C. Hsieh, W.-L. Su, T.-H. Hsieh, and S.-C. Chang, “Artificial Intelligence-Assisted Chest X-ray for the Diagnosis of COVID-19: A Systematic Review and Meta-Analysis,” Diagnostics, vol. 13, no. 4, p. 584, Feb. 2023, doi: 10.3390/diagnostics13040584.

J. Wan, K. Wakaba, T. Onoue, K. Tsushita, and Y. Nakata, “Factors associated with acquiring exercise habits through health guidance for metabolic syndrome among middle-aged Japanese workers: A machine learning approach,” Prev Med Rep, vol. 48, p. 102915, Dec. 2024, doi: 10.1016/j.pmedr.2024.102915.

F. Li, P. Wu, H. H. Ong, J. F. Peterson, W. Q. Wei, and J. Zhao, “Evaluating and mitigating bias in machine learning models for cardiovascular disease prediction,” Journal of biomedical informatics, vol. 138, p. 104294, 2023.

D. C. E. Saputra, E. I. Muryadi, R. Phann, and I. Futri, “An Innovative Artificial Intelligence-Based Extreme Learning Machine Based on Random Forest Classifier for Diagnosed Diabetes Mellitus,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 1, pp. 173–187, 2024, doi: 10.26555/jiteki.v10i1.28690.

D. Cahn et al., “Novel application of deep learning to evaluate conversations from a mental health text support service,” Natural Language Processing Journal, vol. 9, p. 100119, Dec. 2024, doi: 10.1016/j.nlp.2024.100119.

G. Mushtaq and V. K, “AI driven interpretable deep learning based fetal health classification,” SLAS Technol, vol. 29, no. 6, p. 100206, Dec. 2024, doi: 10.1016/j.slast.2024.100206.

S. Pons, E. Dura, J. Domingo, and S. Martin, “Advancing histopathology in Health 4.0: Enhanced cell nuclei detection using deep learning and analytic classifiers,” Comput Stand Interfaces, vol. 91, p. 103889, Jan. 2025, doi: 10.1016/j.csi.2024.103889.

J. Boudreault, A. Ruf, C. Campagna, and F. Chebana, “Multi-region models built with machine and deep learning for predicting several heat-related health outcomes,” Sustain Cities Soc, vol. 115, p. 105785, Nov. 2024, doi: 10.1016/j.scs.2024.105785.

S. Paul and S. Pal, “Mapping wetland habitat health in moribund deltaic India using machine learning and deep learning algorithms,” Ecohydrology & Hydrobiology, vol. 24, no. 3, pp. 667–680, Jul. 2024, doi: 10.1016/j.ecohyd.2024.02.005.

S. Amin, M. A. Zeb, H. Alshahrani, M. Hamdi, M. Alsulami, and A. Shaikh, “Social Media-Based Surveillance Systems for Health Informatics Using Machine and Deep Learning Techniques: A Comprehensive Review and Open Challenges,” Computer Modeling in Engineering & Sciences, vol. 139, no. 2, pp. 1167–1202, 2024, doi: 10.32604/cmes.2023.043921.

S. Maheswari, S. Suresh, and S. Ahamed Ali, “A systematic literature review on machine learning and deep learning-based covid-19 detection frameworks using X-ray Images,” Appl Soft Comput, vol. 166, p. 112137, Nov. 2024, doi: 10.1016/j.asoc.2024.112137.

R. Sarkis-Onofre, F. Catalá-López, E. Aromataris, and C. Lockwood, “How to properly use the PRISMA Statement,” Syst Rev, vol. 10, no. 1, p. 117, Dec. 2021, doi: 10.1186/s13643-021-01671-z.

Asno Azzawagama Firdaus et al., “Application of Sentiment Analysis as an Innovative Approach to Policy Making: A review,” Journal of Robotics and Control (JRC), vol. 5, no. 6, pp. 1784–1798, 2024.

S. Y. N. Kew, S.-Y. Mok, and C.-H. Goh, “Machine learning and brain-computer interface approaches in prognosis and individualized care strategies for individuals with amyotrophic lateral sclerosis: A systematic review,” MethodsX, vol. 13, p. 102765, Dec. 2024, doi: 10.1016/j.mex.2024.102765.

R. Daniel et al., “Predicting type 1 diabetes in children using electronic health records in primary care in the UK: development and validation of a machine-learning algorithm,” The Lancet Digital Health, vol. 6, no. 6, pp. e386-e395, 2024.

M. Koume, L. Seguin, J. Mancini, M.-K. Bendiane, A.-D. Bouhnik, and R. Urena, “Predicting Fear of Breast Cancer Recurrence in women five years after diagnosis using Machine Learning and healthcare reimbursement data from the French nationwide VICAN survey,” Int J Med Inform, vol. 193, p. 105705, Jan. 2025, doi: 10.1016/j.ijmedinf.2024.105705.

H. D. Do et al., “Applying machine learning in screening for Down Syndrome in both trimesters for diverse healthcare scenarios,” Heliyon, vol. 10, no. 15, p. e34476, Aug. 2024, doi: 10.1016/j.heliyon.2024.e34476.

I. Nissar et al., “An Intelligent Healthcare System for Automated Diabetes Diagnosis and Prediction using Machine Learning,” Procedia Comput Sci, vol. 235, pp. 2476–2485, 2024, doi: 10.1016/j.procs.2024.04.233.

S. Tuli et al., “HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments,” Future Generation Computer Systems, vol. 104, pp. 187–200, Mar. 2020, doi: 10.1016/j.future.2019.10.043.

M. Honarvar et al., “Deep Learning Based Shear Wave Detection and Segmentation Tool for Use in Point-of-Care for Chronic Liver Disease Assessments,” Ultrasound Med Biol, vol. 50, no. 12, pp. 1812–1820, Dec. 2024, doi: 10.1016/j.ultrasmedbio.2024.08.002.

J. Huang, Y. Cai, X. Wu, X. Huang, J. Liu, and D. Hu, “Prediction of mortality events of patients with acute heart failure in intensive care unit based on deep neural network,” Comput Methods Programs Biomed, vol. 256, p. 108403, Nov. 2024, doi: 10.1016/j.cmpb.2024.108403.

M. N. Hasan, M. A. Hossain, and M. A. Rahman, “An ensemble based lightweight deep learning model for the prediction of cardiovascular diseases from electrocardiogram images,” Eng Appl Artif Intell, vol. 141, p. 109782, Feb. 2025, doi: 10.1016/j.engappai.2024.109782.

M. Acharya et al., “Deep learning techniques for automated Alzheimer’s and mild cognitive impairment disease using EEG signals: A comprehensive review of the last decade (2013 - 2024),” Comput Methods Programs Biomed, vol. 259, p. 108506, Feb. 2025, doi: 10.1016/j.cmpb.2024.108506.

L. Muflikhah, F. A. Bachtiar, D. E. Ratnawati, and R. Darmawan, “Improving Performance for Diabetic Nephropathy Detection Using Adaptive Synthetic Sampling Data in Ensemble Method of Machine Learning Algorithms,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 1, p. 123, Feb. 2024, doi: 10.26555/jiteki.v10i1.28107.

S. Nayak and N. Gupta, ““Enhancing Stroke Prediction with Machine Learning in Smart Healthcare Systems“,” in 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 1–6, 2024, doi: 10.1109/ICCCNT61001.2024.10724345.

L. Lober, K. O. Roster, and F. A. Rodrigues, “Forecasting infectious diseases in Brazilian cities: Integrating socio-economic and geographic data from related cities through a machine learning approach,” Chaos Solitons Fractals, vol. 187, p. 115417, Oct. 2024, doi: 10.1016/j.chaos.2024.115417.

J. Wang, Z. Qin, J. Hsu, and B. Zhou, “A fusion of machine learning algorithms and traditional statistical forecasting models for analyzing American healthcare expenditure,” Healthcare Analytics, vol. 5, p. 100312, Jun. 2024, doi: 10.1016/j.health.2024.100312.

H. F. El-Sofany, “Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques,” IEEE Access, vol. 12, pp. 106146–106160, 2024, doi: 10.1109/ACCESS.2024.3437181.

B. Mallampati, A. Ishaq, F. Rustam, V. Kuthala, S. Alfarhood, and I. Ashraf, “Brain Tumor Detection Using 3D-UNet Segmentation Features and Hybrid Machine Learning Model,” IEEE Access, vol. 11, pp. 135020–135034, 2023, doi: 10.1109/ACCESS.2023.3337363.

K. Diéguez-Santana and H. González-Díaz, “Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends,” Comput Biol Med, vol. 155, p. 106638, Mar. 2023, doi: 10.1016/j.compbiomed.2023.106638.

M. Wang, J. coChen, and Y. Liu, “Optimized Deep Learning Model for Predicting Liver Metastasis in Colorectal Cancer Patients,” Symmetry (Basel), vol. 17, no. 1, p. 103, Jan. 2025, doi: 10.3390/sym17010103.

M. Chetoui and M. A. Akhloufi, “A Novel Ensemble Meta-Model for Enhanced Retinal Blood Vessel Segmentation Using Deep Learning Architectures,” Biomedicines, vol. 13, no. 1, p. 141, Jan. 2025, doi: 10.3390/biomedicines13010141.

S. Jung, J. Moon, S. Park, and E. Hwang, “Self-Attention-Based Deep Learning Network for Regional Influenza Forecasting,” IEEE J Biomed Health Inform, vol. 26, no. 2, pp. 922–933, Feb. 2022, doi: 10.1109/JBHI.2021.3093897.

S. Yu, F. Xia, Y. Wang, S. Li, F. G. Febrinanto, and M. Chetty, “PANDORA: Deep Graph Learning Based COVID-19 Infection Risk Level Forecasting,” IEEE Trans Comput Soc Syst, vol. 11, no. 1, pp. 717–730, Feb. 2024, doi: 10.1109/TCSS.2022.3229671.

K. Lee et al., “Multi-Task and Few-Shot Learning-Based Fully Automatic Deep Learning Platform for Mobile Diagnosis of Skin Diseases,” IEEE J Biomed Health Inform, vol. 27, no. 1, pp. 176–187, Jan. 2023, doi: 10.1109/JBHI.2022.3193685.

X. Zhang et al., “CXR-Net: A Multitask Deep Learning Network for Explainable and Accurate Diagnosis of COVID-19 Pneumonia From Chest X-Ray Images,” IEEE J Biomed Health Inform, vol. 27, no. 2, pp. 980–991, Feb. 2023, doi: 10.1109/JBHI.2022.3220813.

K. Tang, S. Ma, X. Sun, and D. Guo, “Optimizing machine learning for enhanced automated ECG analysis in cardiovascular healthcare,” Egyptian Informatics Journal, vol. 28, p. 100578, Dec. 2024, doi: 10.1016/j.eij.2024.100578.

E. Mbunge and J. Batani, “Application of deep learning and machine learning models to improve healthcare in sub-Saharan Africa: Emerging opportunities, trends and implications,” Telematics and Informatics Reports, vol. 11, p. 100097, Sep. 2023, doi: 10.1016/j.teler.2023.100097.

A. Cirella et al., “Fully automated approach of machine learning combined with deep learning to forecast the coronary artery disease in patients with non-alcoholic fatty liver disease,” J Hepatol, vol. 78, p. S685, Jun. 2023, doi: 10.1016/S0168-8278(23)02052-4.

D. P. Kiouri, G. C. Batsis, and C. T. Chasapis, “Structure-Based Approaches for Protein–Protein Interaction Prediction Using Machine Learning and Deep Learning,” Biomolecules, vol. 15, no. 1, p. 141, Jan. 2025, doi: 10.3390/biom15010141.

M. Kalaivani and R. Shalini, “Multi-Disease Prediction Techniques using Machine and Deep Learning,” in 2023 4th International Conference for Emerging Technology (INCET), pp. 1–5, 2023, doi: 10.1109/INCET57972.2023.10170201.

J. Vaghasiya, M. Khan, and T. Milan Bakhda, “A meta-analysis of AI and machine learning in project management: Optimizing vaccine development for emerging viral threats in biotechnology,” Int J Med Inform, vol. 195, p. 105768, Mar. 2025, doi: 10.1016/j.ijmedinf.2024.105768.

F. M. Delpino et al., “Does machine learning have a high performance to predict obesity among adults and older adults? A systematic review and meta-analysis,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 34, no. 9, pp. 2034–2045, Sep. 2024, doi: 10.1016/j.numecd.2024.05.020.

N. F. Boakye, C. C. O’Toole, A. Jalali, and A. Hannigan, “Comparing logistic regression and machine learning for obesity risk prediction: A systematic review and meta-analysis,” Int J Med Inform, vol. 199, p. 105887, Jul. 2025, doi: 10.1016/j.ijmedinf.2025.105887.

R. Xie et al., “Machine learning-based prediction models for falls in hospitalized patients: A systematic review and meta-analysis,” Geriatr Nurs (Minneap), vol. 63, pp. 487–498, May 2025, doi: 10.1016/j.gerinurse.2025.03.059.

M. E. Kilic, M. E. Arayici, O. E. Turan, Y. R. Yilancioglu, E. E. Ozcan, and M. B. Yilmaz, “Diagnostic Accuracy of Machine Learning Algorithms in Electrocardiogram-Based Sleep Apnea Detection: A Systematic Review and Meta-Analysis,” Sleep Med Rev, p. 102097, May 2025, doi: 10.1016/j.smrv.2025.102097.

Downloads

Published

2025-07-26

How to Cite

[1]
D. Santoso, A. A. Firdaus, M. Yunus, and M. Pangri, “Unveiling the Predictive Power of Machine Learning and Deep Learning: A Comparative Study on Disease Diagnosis, Detection, and Mortality Risk in Healthcare”, J Robot Control (JRC), vol. 6, no. 4, pp. 1972–1984, Jul. 2025.

Issue

Section

Articles