Augmented Reality in Robotic Surgery: A Case Study on Precision and Workflow Integration From Real to Virtual Environment

Authors

  • Tanazzah Rehman Khan NED University of Engineering
  • Sheraz Saudagar Kennesaw State University
  • Zainab Fatima Kennesaw State University
  • M. Hassan Tanveer Kennesaw State University
  • Shehnila Zardari NED University of Engineering
  • Razvan C. Voicu Kennesaw State University
  • Hazry Desa Universiti Malaysia Perlis

DOI:

https://doi.org/10.18196/jrc.v6i3.26349

Keywords:

Augmented Reality, Robotic-Assisted Surgery, Intraoperative Guidance, Transoral Robotic Surgery, Prostatectomy, Sensor Fusion, Haptic Feedback, Real-Time Imaging, Partial Nephrectomy, AR Surgical Training

Abstract

Augmented Reality (AR) offers the transformative capability to integrate digital data directly into the surgical field, significantly enhancing intraoperative guidance during roboticassisted oncological procedures. Since its early adoption in the 1990s, AR in surgery has evolved with advancements in headmounted displays, computer vision, and sensor fusion technologies. In this case study, AR was applied to robotic interventions in prostate, kidney, and head-and-neck cancers, resulting in a 30% reduction in resection errors during radical prostatectomy and a 20% decrease in operative time for transoral robotic surgeries (TORS). Integration of AI-driven haptic feedback and real-time fluorescence spectroscopy further improved tumor localization accuracy from 47.3% to 70.0%. Despite its promise, the widespread implementation of AR faces challenges such as high setup costs, steep learning curves, and limitations in depth perception and realtime image registration. Emerging technologies like 5G-enabled AR streaming and dynamic deformable models present new pathways for remote surgical mentorship and improved anatomical fidelity. This paper highlights the role of AR in improving precision, reducing complications, and redefining surgical training, emphasizing its potential to reshape clinical practice across diverse oncological applications.

References

R. V. Nuncio and J. M. B. Felicilda, “Cybernetics and Simulacra: The Hyperreality of Augmented Reality Games,” KRITIKE: An Online Journal of Philosophy, vol. 15, no. 2, pp. 39–67, 2021.

W. O. C. Lopez ´ et al., “Intraoperative clinical application of augmented reality in neurosurgery: A systematic review,” Clinical Neurology and Neurosurgery, vol. 177, pp. 6–11, 2019, doi: 10.1016/j.clineuro.2018.11.018.

P. Vavra ´ et al., “Recent Development of Augmented Reality in Surgery: A Review,” Journal of healthcare engineering, 2017, doi: 10.1155/2017/4574172.

N. Wake, J. E. Nussbaum, M. I. Elias, C. V. Nikas, and M. A. Bjurlin, “3D printing, augmented reality, and virtual reality for the assessment and management of kidney and prostate cancer: A systematic review,” Urology, vol. 143, pp. 20–32, 2020, doi: 10.1016/j.urology.2020.03.066.

C. Dennler, D. E. Bauer, A.-G. Scheibler, J. Spirig, T. Gotschi, P. ¨ Furnstahl, and M. Farshad, “Augmented reality in the operating room: ¨ A clinical feasibility study,” BMC Musculoskeletal Disorders, vol. 22, no. 451, 2021, doi: 10.1186/s12891-021-04339-w.

F. Porpiglia et al., “Three-dimensional elastic augmented-reality robotassisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: A step further in the identification of capsular involvement,” European Urology, vol. 76, no. 4, pp. 505–514, 2019, doi: 10.1016/j.eururo.2019.03.037.

H. W. Goo, S. J. Park, and S. J. Yoo, “Advanced medical use of three-dimensional imaging in congenital heart disease: Augmented reality, mixed reality, virtual reality, and three-dimensional printing,” Korean Journal of Radiology, vol. 21, no. 2, pp. 133–145, 2020, doi: 10.3348/kjr.2019.0625.

L. Qian, J. Y. Wu, S. P. DiMaio, N. Navab and P. Kazanzides, “A Review of Augmented Reality in Robotic-Assisted Surgery,” in IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 1, pp. 1-16, 2020, doi: 10.1109/TMRB.2019.2957061.

L. Qian, A. Deguet, Z. Wang, Y. -H. Liu and P. Kazanzides, “Augmented Reality Assisted Instrument Insertion and Tool Manipulation for the First Assistant in Robotic Surgery,” 2019 International Conference on Robotics and Automation (ICRA), pp. 5173-5179, 2019, doi: 10.1109/ICRA.2019.8794263.

D. Gorpas et al., “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Scientific Reports, vol. 9, no. 1, 2019, doi: 10.1038/s41598-018-37237-8.

J. Y. K. Chan, F. C. Holsinger, S. Liu, J. M. Sorger, M. Azizian, and R. K. Y. Tsang, “Augmented reality for image guidance in transoral robotic surgery,” Journal of Robotic Surgery, vol. 14, pp. 579–583, 2020, doi: 10.1007/s11701-019-01030-0.

M.-P. Forte, R. Gourishetti, B. Javot, T. Engler, E. D. Gomez, and K. J. Kuchenbecker, “Design of interactive augmented reality functions for robotic surgery and evaluation in dry-lab lymphadenectomy,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 18, no. 2, 2022, doi: 10.1002/rcs.2351.

M. Ye, E. Johns, A. Handa, L. Zhang, P. Pratt, and G.-Z. Yang, “Selfsupervised siamese learning on stereo image pairs for depth estimation in robotic surgery,” arXiv, 2017, doi: 10.48550/arXiv.1705.08260.

J. Fotouhi et al., “Reflective-AR Display: An Interaction Methodology for Virtual-to-Real Alignment in Medical Robotics,” in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2722-2729, 2020, doi: 10.1109/LRA.2020.2972831.

L. Qian, A. Deguet, and P. Kazanzides, “ARssist: augmented reality on a head-mounted display for the first assistant in robotic surgery,” Healthcare Technology Letters, vol. 5, no. 5, pp. 194–200, 2018, doi: 10.1049/htl.2018.5065.

R. Wen, W.-L. Tay, B. P. Nguyen, C.-B. Chng, and C.-K. Chui, “Hand gesture guided robot-assisted surgery based on a direct augmented reality interface,” Computer Methods and Programs in Biomedicine, vol. 116, no. 2, pp. 68–80, 2014, doi: 10.1016/j.cmpb.2013.12.018.

Z. Makhataeva and A. Varol, “Augmented Reality for Robotics: A Review,” Robotics, vol. 9, no. 2, 2020, doi: 10.3390/robotics9020021.

A. Chowriappa, S. J. Raza, A. Fazili, E. Field, C. Malito, D. Samarasekera, Y. Shi, K. Ahmed, G. Wilding, J. Kaouk, et al., “Augmented-realitybased skills training for robot-assisted urethrovesical anastomosis: A multi-institutional randomised controlled trial,” BJU International, vol. 115, no. 2, pp. 336–345, 2015, doi: 10.1111/bju.12704.

N. Costa and A. Arsenio, “Augmented Reality behind the wheel - Human Interactive Assistance by Mobile Robots,” 2015 6th International Conference on Automation, Robotics and Applications (ICARA), pp. 63- 69, 2015, doi: 10.1109/ICARA.2015.7081126.

P. Pessaux, M. Diana, L. Soler, T. Piardi, D. Mutter, and J. Marescaux, “Towards cybernetic surgery: Robotic and augmented reality-assisted liver segmentectomy,” Langenbeck’s Archives of Surgery, vol. 400, pp. 381–385, 2015, doi: 10.1007/s00423-014-1256-9.

W. P. Liu, J. D. Richmon, J. M. Sorger, M. Azizian, and R. H. Taylor, “Augmented reality and cone beam CT guidance for transoral robotic surgery,” Journal of Robotic Surgery, vol. 9, pp. 223–233, 2015, doi: 10.1007/s11701-015-0520-5.

R. M. Dickey, N. Srikishen, L. I. Lipshultz, P. E. Spiess, R. E. Carrion, and T. S. Hakky, “Augmented reality assisted surgery: A urologic training tool,” Asian Journal of Andrology, vol. 18, no. 5, pp. 732–734, 2016, doi: 10.4103/1008-682X.166436.

K. Madhavan, J. P. G. Kolcun, L. O. Chieng, and M. Y. Wang, “Augmented-reality integrated robotics in neurosurgery: Are we there yet?,” Neurosurgical Focus, vol. 42, no. 5, 2017, doi: 10.3171/2017.2.FOCUS177.

C. Lee and G. K. C. Wong, “Virtual reality and augmented reality in the management of intracranial tumors: A review,” Journal of Clinical Neuroscience, vol. 62, pp. 14–20, 2019, doi: 10.1016/j.jocn.2018.12.036.

R. Singla, P. Edgcumbe, P. Pratt, C. Nguan, and R. Rohling, “Intraoperative ultrasound-based augmented reality guidance for laparoscopic surgery,” Healthcare Technology Letters, vol. 4, no. 5, pp. 204–209, 2017, doi: 10.1049/htl.2017.0063.

J. E. Bostick, J. M. Ganci, M. G. Keen, S. K. Rakshit, and C. M. Trim, Augmented control of robotic prosthesis by a cognitive system, US Patent, 2017.

F. Porpiglia et al., “Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA 3D™) technology: A radiological and pathological study,” BJU International, vol. 123, no. 5, pp. 834–845, 2019, doi: 10.1111/bju.14549.

R. Ocampo and M. Tavakoli, “Visual-Haptic Colocation in Robotic Rehabilitation Exercises Using a 2D Augmented-Reality Display,” 2019 International Symposium on Medical Robotics (ISMR), pp. 1-7, 2019, doi: 10.1109/ISMR.2019.8710185.

T. Wendler, F. W. B. van Leeuwen, N. Navab, and M. N. van Oosterom, “How molecular imaging will enable robotic precision surgery: The role of artificial intelligence, augmented reality, and navigation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 13, pp. 4201–4224, 2021, doi: 10.1007/s00259-021-05445-6.

D. Gorpas et al., “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Scientific Reports, vol. 9, no. 1, 2019, doi: 10.1038/s41598-018-37237-8.

F. Porpiglia et al., “Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA≥10): A new intraoperative tool overcoming the ultrasound guidance,” European Urology, vol. 78, no. 2, pp. 229–238, 2020, doi: 10.1016/j.eururo.2019.11.024.

F. Giannone, E. Felli, Z. Cherkaoui, P. Mascagni, and P. Pessaux, “Augmented reality and image-guided robotic liver surgery,” Cancers, vol. 13, no. 24, 2021, doi: 10.3390/cancers13246268.

L. Privitera, I. Paraboschi, K. Cross, and S. Giuliani, “Above and beyond robotic surgery and 3D modelling in paediatric cancer surgery,” Frontiers in Pediatrics, vol. 9, 2021, doi: 10.3389/fped.2021.777840.

R. Schiavina et al., “Augmented reality to guide selective clamping and tumor dissection during robot-assisted partial nephrectomy: A preliminary experience,” Clinical Genitourinary Cancer, vol. 19, no. 3, pp. e149–e155, 2021, doi: 10.1016/j.clgc.2020.09.005.

F. Porpiglia et al, “Current use of three-dimensional model technology in urology: A road map for personalised surgical planning,” European Urology Focus, vol. 4, no. 5, pp. 652–656, 2018, 10.1016/j.euf.2018.09.012.

T. Wendler, F. W. B. van Leeuwen, N. Navab, and M. N. van Oosterom, “How molecular imaging will enable robotic precision surgery: The role of artificial intelligence, augmented reality, and navigation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 13, pp. 4201–4224, 2021, doi: 10.1007/s00259-021-05445-6.

P. Pratt and A. Arora, “Transoral robotic surgery: image guidance and augmented reality,” ORL, vol. 80, no. 3-4, pp. 204–212, 2018, doi: 10.1159/000489467.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals of Surgical Treatment and Research, vol. 95, no. 6, pp. 297–302, 2018, doi: 10.4174/astr.2018.95.6.297.

P. Edgcumbe, R. Singla, P. Pratt, C. Schneider, C. Nguan, and R. Rohling, “Augmented reality imaging for robot-assisted partial nephrectomy surgery,” in Medical Imaging and Augmented Reality, vol. 9805, pp. 139–150, 2016, doi: 10.1007/978-3-319-43775-0 13.

E. Samset, D. Schmalstieg, J. Vander Sloten, A. Freudenthal, J. Declerck, S. Casciaro, Ø. Rideng, and B. Gersak, “Augmented reality in surgical procedures,” in Human Vision and Electronic Imaging XIII, vol. 6806, pp. 194–205, 2008, doi: 10.1117/12.784155.

D. Cohen, E. Mayer, D. Chen, A. Anstee, J. Vale, G. Z. Yang, A. Darzi, and P. E. Edwards, “Augmented reality image guidance in minimally invasive prostatectomy,” in Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention, vol. 6367, pp. 101–110, 2010, doi: 10.1007/978-3-642-15989-3 12.

M. C. Hekman, M. Rijpkema, J. F. Langenhuijsen, O. C. Boerman, E. Oosterwijk, and P. F. Mulders, “Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy,” European Urology Focus, vol. 4, no. 6, pp. 960–968, 2018, doi: 10.1016/j.euf.2017.04.008.

J. Shen, N. Zemiti, C. Taoum, G. Aiche, J.-L. Dillenseger, P. Rouanet, and P. Poignet, “Transrectal ultrasound image-based real-time augmented reality guidance in robot-assisted laparoscopic rectal surgery: A proofof-concept study,” International Journal of Computer Assisted Radiology and Surgery, vol. 15, pp. 531–543, 2020, doi: 10.1007/s11548-019- 02100-2.

G. Garas and A. Arora, “Robotic head and neck surgery: history, technical evolution and the future,” ORL, vol. 80, no. 3-4, pp. 117–124, 2018, doi: 10.1159/000489464.

G. Samei, K. Tsang, C. Kesch, J. Lobo, S. Hor, O. Mohareri, S. Chang, S. L. Goldenberg, P. C. Black, and S. Salcudean, “A partial augmented reality system with live ultrasound and registered preoperative MRI for guiding robot-assisted radical prostatectomy,” Medical Image Analysis, vol. 60, 2020, doi: 10.1016/j.media.2019.101588.

S. Condino, R. Piazza, M. Carbone, J. Bath, N. Troisi, M. Ferrari, and R. Berchiolli, “Bioengineering, augmented reality, and robotic surgery in vascular surgery: A literature review,” Frontiers in Surgery, vol. 9, 2022, doi: 10.3389/fsurg.2022.966118.

L. Qian, J. Y. Wu, S. P. DiMaio, N. Navab and P. Kazanzides, “A Review of Augmented Reality in Robotic-Assisted Surgery,” in IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 1, pp. 1-16, 2020, doi: 10.1109/TMRB.2019.2957061.

F. Porpiglia, R. Bertolo, D. Amparore, E. Checcucci, W. Artibani, P. Dasgupta, F. Montorsi, A. Tewari, and C. Fiori, “Augmented reality during robot-assisted radical prostatectomy: Expert robotic surgeons’ onthe-spot insights after live surgery,” Minerva Urologica e Nefrologica: The Italian Journal of Urology and Nephrology, vol. 70, no. 2, pp. 226– 229, 2018, doi: 10.23736/s0393-2249.18.03143-0.

P. Edgcumbe, R. Singla, P. Pratt, C. Schneider, C. Nguan, and R. Rohling, “Follow the light: projector-based augmented reality intracorporeal system for laparoscopic surgery,” Journal of Medical Imaging, vol. 5, no. 2, 2018, doi: 10.1117/1.JMI.5.2.021216.

G. Vadala, S. De Salvatore, L. Ambrosio, F. Russo, R. Papalia, and ` V. Denaro, “Robotic spine surgery and augmented reality systems: A state of the art,” Neurospine, vol. 17, no. 1, pp. 88-100, 2020, doi: 10.14245/ns.2040060.030.

D. Lee et al., “Vision-based tracking system for augmented reality to localize recurrent laryngeal nerve during robotic thyroid surgery,” Scientific Reports, vol. 10, no. 1, 2020, doi: 10.1038/s41598-020-65439- 6.

J. Fotouhi et al., “Reflective-AR Display: An Interaction Methodology for Virtual-to-Real Alignment in Medical Robotics,” in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2722-2729, 2020, doi: 10.1109/LRA.2020.2972831.

E. Checcucci et al., “3D imaging applications for robotic urologic surgery: An ESUT YAUWP review,” World Journal of Urology, vol. 38, pp. 869–881, 2020, doi: /10.1007/s00345-019-02922-4.

R. Schiavina et al., “Real-time augmented reality three-dimensional guided robotic radical prostatectomy: Preliminary experience and evaluation of the impact on surgical planning,” European Urology Focus, vol. 7, no. 6, pp. 1260–1267, 2021, doi: 10.1016/j.euf.2020.08.004.

H. Iqbal, F. Tatti, and F. R. y Baena, “Augmented reality in robotic assisted orthopaedic surgery: A pilot study,” Journal of Biomedical Informatics, vol. 120, 2021, doi: 10.1016/j.jbi.2021.103841.

G. M. Minopoulos, V. A. Memos, K. D. Stergiou, C. L. Stergiou, and K. E. Psannis, “A medical image visualization technique assisted with AI-based haptic feedback for robotic surgery and healthcare,” Applied Sciences, vol. 13, no. 6, 2023, doi: 10.3390/app13063592.

H. Ghaednia, M. S. Fourman, A. Lans, K. Detels, H. Dijkstra, S. Lloyd, A. Sweeney, J. H. F. Oosterhoff, and J. H. Schwab, “Augmented and virtual reality in spine surgery: Current applications and future potentials,” The Spine Journal, vol. 21, no. 10, pp. 1617–1625, 2021, doi: 10.1016/j.spinee.2021.03.018.

N. Wake, M. A. Bjurlin, P. Rostami, H. Chandarana, and W. C. Huang, “Three-dimensional printing and augmented reality: Enhanced precision for robotic assisted partial nephrectomy,” Urology, vol. 116, pp. 227– 228, 2018.

A. Navaratnam, H. Abdul-Muhsin, and M. Humphreys, “Updates in urologic robot assisted surgery,” F1000Research, vol. 7, 2018, doi: 10.12688/f1000research.15480.1.

L. Bianchi et al., “The use of augmented reality to guide the intraoperative frozen section during robot-assisted radical prostatectomy,” European Urology, vol. 80, no. 4, pp. 480–488, 2021, doi: 10.1016/j.eururo.2021.06.020.

N. Wake, J. E. Nussbaum, M. I. Elias, C. V. Nikas, and M. A. Bjurlin, “3D printing, augmented reality, and virtual reality for the assessment and management of kidney and prostate cancer: A systematic review,” Urology, vol. 143, pp. 20–32, 2020, doi: 10.1016/j.urology.2020.03.066.

J. H. Shuhaiber, “Augmented reality in surgery,” Archives of Surgery, vol. 139, no. 2, pp. 170–174, 2004, doi: 10.1001/archsurg.139.2.170.

J. Troccaz, M. Peshkin, and B. Davies, “Guiding systems for computerassisted surgery: Introducing synergistic devices and discussing the different approaches,” Medical Image Analysis, vol. 2, no. 2, pp. 101– 119, 1998, doi: 10.1016/S1361-8415(98)80006-6.

M. Roth, D. C. Lanza, D. W. Kennedy, D. Yousem, K. A. Scanlan, and J. Zinreich, “Advantages and disadvantages of three-dimensional computed tomography intraoperative localization for functional endoscopic sinus surgery,” The Laryngoscope, vol. 105, no. 12, pp. 1279–1286, 1995, doi: 10.1288/00005537-199512000-00003.

S. Bernhardt, S. A. Nicolau, L. Soler, and C. Doignon, “The status of augmented reality in laparoscopic surgery as of 2016,” Medical Image Analysis, vol. 37, pp. 66–90, 2017, doi: 10.1016/j.media.2017.01.007.

E. Barcali, E. Iadanza, L. Manetti, P. Francia, C. Nardi, and L. Bocchi, “Augmented reality in surgery: A scoping review,” Applied Sciences, vol. 12, no. 14, 2022, doi: 10.3390/app12146890.

F. Volonte, F. Pugin, P. Bucher, M. Sugimoto, O. Ratib, and P. Morel, ´ “Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: Not only a matter of fashion,” Journal of Hepato-biliary-pancreatic Sciences, vol. 18, no. 4, pp. 506–509, 2011, doi: 10.1007/s00534-011-0385-6.

L. Qian, A. Deguet, and P. Kazanzides, “ARssist: Augmented reality on a head-mounted display for the first assistant in robotic surgery,” Healthcare Technology Letters, vol. 5, no. 5, pp. 194–200, 2018, doi: 10.1049/htl.2018.5065.

T. Yamamoto, N. Abolhassani, S. Jung, A. M. Okamura, and T. N. Judkins, “Augmented reality and haptic interfaces for robot-assisted surgery,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 8, no. 1, pp. 45–56, 2012, doi: 10.1002/rcs.421.

T. Akinbiyi et al., “Dynamic Augmented Reality for Sensory Substitution in Robot-Assisted Surgical Systems,” 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 567-570, 2006, doi: 10.1109/IEMBS.2006.259707.

R. Wen, C.-B. Chng, and C.-K. Chui, “Augmented reality guidance with multimodality imaging data and depth-perceived interaction for robot-assisted surgery,” Robotics, vol. 6, no. 2 2017, doi: 10.3390/robotics6020013.

C. L. Stewart, A. Fong, G. Payyavula, S. DiMaio, K. Lafaro, K. Tallmon, S. Wren, J. Sorger, and Y. Fong, “Study on augmented reality for robotic surgery bedside assistants,” Journal of Robotic Surgery, vol. 16, no. 5, pp. 1019–1026, 2022, doi: 10.1007/s11701-021-01335-z.

P. Vavra, J. Roman, P. Zon ´ ca, P. Ihn ˇ at, M. N ´ emec, J. Kumar, N. Habib, ˇ and A. El-Gendi, “Recent development of augmented reality in surgery: A review,” Journal of Healthcare Engineering, vol. 2017, 2017, doi: 10.1155/2017/4574172.

R. Wen, L. Yang, C. -K. Chui, K. -B. Lim and S. Chang, “Intraoperative visual guidance and control interface for augmented reality robotic surgery,” IEEE ICCA 2010, pp. 947-952, 2010, doi: 10.1109/ICCA.2010.5524421.

Y. Long, J. Cao, A. Deguet, R. H. Taylor and Q. Dou, “Integrating Artificial Intelligence and Augmented Reality in Robotic Surgery: An Initial dVRK Study Using a Surgical Education Scenario,” 2022 International Symposium on Medical Robotics (ISMR), pp. 1-8, 2022, doi: 10.1109/ISMR48347.2022.9807505.

S. L. Chang, A. S. Kibel, J. D. Brooks, and B. I. Chung, “The impact of robotic surgery on the surgical management of prostate cancer in the USA,” BJU International, vol. 115, no. 6, pp. 929–936, 2015, doi: 10.1111/bju.12850.

M.-P. Forte, R. Gourishetti, B. Javot, T. Engler, E. D. Gomez, and K. J. Kuchenbecker, “Design of interactive augmented reality functions for robotic surgery and evaluation in dry-lab lymphadenectomy,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 18, no. 2, 2022, doi: 10.1002/rcs.2351.

A. H. Mendelsohn and M. Remacle, “Transoral robotic surgery for laryngeal cancer,” Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 23, no. 2, pp. 148–152, 2015, doi: 10.1097/MOO.0000000000000144.

X. Su, Y. Fan, L. Yang, J. Huang, F. Qiao, Y. Fang, and J. Wang, “Dexmedetomidine expands monocytic myeloid-derived suppressor cells and promotes tumour metastasis after lung cancer surgery,” Journal of Translational Medicine, vol. 16, no. 347, pp. 1–13, 2018, doi: 10.1186/s12967-018-1727-9.

C. M. Morales Mojica, “A prototype holographic augmented reality interface for image-guided prostate cancer interventions,” in Eurographics Workshop on Visual Computing for Biomedicine, 2018, doi: 10.2312/vcbm.20181225.

A. Arjomandi Rad, R. Vardanyan, S. G. Thavarajasingam, A. Zubarevich, J. Van den Eynde, M. P. B. Sa, K. Zhigalov, P. Sardiari Nia, ´ A. Ruhparwar, and A. Weymann, “Extended, virtual and augmented reality in thoracic surgery: A systematic review,” Interactive CardioVascular and Thoracic Surgery, vol. 34, no. 2, pp. 201–211, 2022, doi: 10.1093/icvts/ivab241.

C. Gerrand, “CORR Insights®: Can augmented reality be helpful in pelvic bone cancer surgery? An in vitro study,” Clinical Orthopaedics and Related Research®, vol. 476, no. 9, pp. 1726–1727, 2018, doi: 10.1007/s11999.0000000000000233.

P. Gorphe, “A contemporary review of evidence for transoral robotic surgery in laryngeal cancer,” Frontiers in Oncology, vol. 8, 2018, doi: 10.3389/fonc.2018.00121.

Y. Goto, A. Kawaguchi, Y. Inoue, Y. Nakamura, Y. Oyama, A. Tomioka, F. Higuchi, T. Uno, M. Shojima, T. Kin, and others, “Efficacy of a novel augmented reality navigation system using 3D computer graphic modeling in endoscopic transsphenoidal surgery for sellar and parasellar tumors,” Cancers, vol. 15, no. 7, 2023, doi: 10.3390/cancers15072148.

C. Gsaxner, J. Wallner, X. Chen, W. Zemann, and J. Egger, “Facial model collection for medical augmented reality in oncologic cranio-maxillofacial surgery,” Scientific Data, vol. 6, no. 1, 2019, doi: 10.1038/s41597-019-0327-8.

M. Woolman, J. Qiu, C. M. Kuzan-Fischer, I. Ferry, D. Dara, L. Katz, F. Daud, M. Wu, M. Ventura, N. Bernards, and others, “In situ tissue pathology from spatially encoded mass spectrometry classifiers visualized in real time through augmented reality,” Chemical Science, vol. 11, no. 33, pp. 8723–8735, 2020, doi: 10.1039/D0SC02241A.

W. Zhang, W. Zhu, J. Yang, N. Xiang, N. Zeng, H. Hu, F. Jia, and C. Fang, “Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: Preliminary experience,” Frontiers in Oncology, vol. 11, 2021, doi: 10.3389/fonc.2021.663236.

M. E. Ivan, D. G. Eichberg, L. Di, A. H. Shah, E. M. Luther, V. M. Lu, R. J. Komotar, and T. M. Urakov, “Augmented reality headmounted display–based incision planning in cranial neurosurgery: A prospective pilot study,” Neurosurgical Focus, vol. 51, no. 2, 2021, doi: 10.3171/2021.5.FOCUS20735.

R. Bertolo, A. Hung, F. Porpiglia, P. Bove, M. Schleicher, and P. Dasgupta, “Systematic review of augmented reality in urological interventions: The evidences of an impact on surgical outcomes are yet to come,” World Journal of Urology, vol. 38, pp. 2167–2176, 2020, doi: 10.1007/s00345-019-02711-z.

A. J. Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen, “A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery,” Expert Review of Medical Devices, vol. 18, no. 1, pp. 47–62, 2021, doi: 10.1080/17434440.2021.1860750.

Y. Tai, J. Shi, J. Pan, A. Hao, and V. Chang, “Augmented reality-based visual-haptic modeling for thoracoscopic surgery training systems,” Virtual Reality & Intelligent Hardware, vol. 3, no. 4, pp. 274–286, 2021, doi: 10.1016/j.vrih.2021.08.002.

C. Gsaxner, A. Pepe, J. Li, U. Ibrahimpasic, J. Wallner, D. Schmalstieg, and J. Egger, “Augmented reality for head and neck carcinoma imaging: Description and feasibility of an instant calibration, markerless approach,” Computer Methods and Programs in Biomedicine, vol. 200, 2021, doi: 10.1016/j.cmpb.2020.105854.

J. Roessel, M. Knoell, J. Hofmann and R. Buettner, “A Systematic Literature Review of Practical Virtual and Augmented Reality Solutions in Surgery,” 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 489-498, 2020, doi: 10.1109/COMPSAC48688.2020.0-204.

D. J. Thomas, “Augmented reality in surgery: The computer-aided medicine revolution,” International Journal of Surgery, vol. 36, 2016, 10.1016/j.ijsu.2016.10.003.

L. Lan, Y. Xia, R. Li, K. Liu, J. Mai, J. A. Medley, S. Obeng-Gyasi, L. K. Han, P. Wang, and J.-X. Cheng, “A fiber optoacoustic guide with augmented reality for precision breast-conserving surgery,” Light: Science and Applications, vol. 7, no. 1, 2018, doi: 10.1038/s41377-018- 0006-0.

A. W. K. Yeung, A. Tosevska, E. Klager, F. Eibensteiner, D. Laxar, J. Stoyanov, M. Glisic, S. Zeiner, S. T. Kulnik, R. Crutzen, and others, “Virtual and augmented reality applications in medicine: Analysis of the scientific literature,” Journal of Medical Internet Research, vol. 23, no. 2, 2021, doi: 10.2196/25499.

D. Ntourakis, R. Memeo, L. Soler, J. Marescaux, D. Mutter, and P. Pessaux, “Augmented reality guidance for the resection of missing colorectal liver metastases: An initial experience,” World Journal of Surgery, vol. 40, pp. 419–426, 2016, doi: 10.1007/s00268-015-3229-8.

H. Rahman, H. Arshad, R. Mahmud, and Z. R. Mahayuddin, “A framework for breast cancer visualization using augmented reality x-ray vision technique in mobile technology,” in AIP Conference Proceedings, vol. 1891, no. 1, 2017, doi: 10.1063/1.5005449.

G. Moawad, P. Tyan, and M. Louie, “Artificial intelligence and augmented reality in gynecology,” Current Opinion in Obstetrics and Gynecology, vol. 31, no. 5, pp. 345–348, 2019, doi: 10.1097/GCO.0000000000000559.

C. F. Dibble and C. A. Molina, “Device profile of the XVision-spine (XVS) augmented-reality surgical navigation system: Overview of its safety and efficacy,” Expert Review of Medical Devices, vol. 18, no. 1, pp. 1–8, 2021, doi: 10.1080/17434440.2021.1865795.

J. Y. K. Chan et al., “Augmented reality for image guidance in transoral robotic surgery,” Journal of Robotic Surgery, vol. 14, pp. 579–583, 2020, doi: 10.1007/s11701-019-01030-0.

F. Porpiglia, “Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: A step further in the identification of capsular involvement,” European Urology, vol. 76, no. 4, pp. 505–514, 2019, doi: 10.1016/j.eururo.2019.03.037.

L. Qian, A. Deguet and P. Kazanzides, “ARssist: Augmented reality on a head-mounted display for the first assistant in robotic surgery,” Healthcare Technology Letters, vol. 5, no. 5, pp. 194–200, 2018, doi: 10.1049/htl.2018.5065.

M. P. Forte et al., “Design of interactive augmented reality functions for robotic surgery and evaluation in dry-lab lymphadenectomy,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 18, no. 2, 2022, doi: 10.1002/rcs.2351.

Z. Makhataeva and A. Varol, “Augmented Reality for Robotics: A Review,” Robotics, vol. 9, no. 2, 2020, doi: 10.3390/robotics9020021.

Downloads

Published

2025-05-28

How to Cite

[1]
T. R. Khan, “Augmented Reality in Robotic Surgery: A Case Study on Precision and Workflow Integration From Real to Virtual Environment”, J Robot Control (JRC), vol. 6, no. 3, pp. 1357–1374, May 2025.

Issue

Section

Articles

Most read articles by the same author(s)