A Comprehensive Review of EEGLAB for EEG Signal Processing: Prospects and Limitations

Authors

  • Yuri Pamungkas Institut Teknologi Sepuluh Nopember
  • Rahmah Yasinta Rangkuti Institut Teknologi Sepuluh Nopember
  • Evi Triandini Institut Teknologi dan Bisnis STIKOM Bali
  • Kanittha Nakkliang Valaya Alongkorn Rajabhat University
  • Wawan Yunanto National Taiwan University of Science and Technology (NTUST)
  • Muhammad Nur Afnan Uda Universiti Malaysia Sabah
  • Uda Hashim Universiti Malaysia Sabah

DOI:

https://doi.org/10.18196/jrc.v6i4.27084

Keywords:

EEGLAB, EEG Signal Processing, ICA, Artifact Removal, EEG Connectivity Analysis

Abstract

EEGLAB is a MATLAB-based software that is widely used for EEG signal processing due to its complete features, analysis flexibility, and active open-source community. This review aims to evaluate the use of EEGLAB based on 55 research articles published between 2020 and 2024, and analyze its prospects and limitations in EEG processing. The articles were obtained from reputable databases, namely ScienceDirect, IEEE Xplore, SpringerLink, PubMed, Taylor & Francis, and Emerald Insight, and have gone through a strict study selection stage based on eligibility criteria, topic relevance, and methodological quality. The review results show that EEGLAB is widely used for EEG data preprocessing such as filtering, ICA, artifact removal, and advanced analysis such as ERP, ERSP, brain connectivity, and activity source estimation. EEGLAB has bright prospects in the development of neuroinformatics technology, machine learning integration, multimodal analysis, and large-scale EEG analysis which is increasingly needed. However, EEGLAB still has significant limitations, including a high reliance on manual inspection in preprocessing, low spatial resolution in source modeling, limited multimodal integration, low computational efficiency for large-scale EEG data, and a high learning curve for new users. To overcome these limitations, future research is recommended to focus on developing more accurate automation methods, increasing the spatial resolution of source analysis, more efficient multimodal integration, high computational support, and implementing open science with a standardized EEG data format. This review provides a novel contribution by systematically mapping EEGLAB’s usage trends and pinpointing critical technical and methodological gaps that must be addressed for broader neurotechnology adoption.

Author Biographies

Yuri Pamungkas, Institut Teknologi Sepuluh Nopember

Department of Medical Technology

Rahmah Yasinta Rangkuti, Institut Teknologi Sepuluh Nopember

Department of Medicine

Evi Triandini, Institut Teknologi dan Bisnis STIKOM Bali

Institut Teknologi dan Bisnis STIKOM Bali

Kanittha Nakkliang, Valaya Alongkorn Rajabhat University

Department of Health System Management

Wawan Yunanto, National Taiwan University of Science and Technology (NTUST)

Department of Computer Science and Information Engineering

Muhammad Nur Afnan Uda, Universiti Malaysia Sabah

Department of Electronic and Computer Engineering

Uda Hashim, Universiti Malaysia Sabah

Department of Electrical Electronic Engineering

References

R. Amini Gougeh and T. H. Falk, “Head-Mounted Display-Based Virtual Reality and Physiological Computing for Stroke Rehabilitation: A Systematic Review,” Frontiers in Virtual Reality, vol. 3, May 2022, doi: 10.3389/frvir.2022.889271.

L. Xiong, N. Li, Y. Luo, and L. Chen, “Sustainable development of electroencephalography materials and technology,” SusMat, vol. 4, no. 2, Apr. 2024, doi: 10.1002/sus2.195.

Delorme A and Makeig S, “EEGLAB: an open-source toolbox for analysis of single-trial EEG dynamics,” Journal of Neuroscience Methods, vol. 134, pp. 9–21, 2004.

A. Mayeli et al., “Automated pipeline for EEG artifact reduction (APPEAR) recorded during fMRI,” Journal of Neural Engineering, vol. 18, no. 4, 2021, doi: 10.1088/1741-2552/ac1037.

W. C. Su et al., “Simultaneous multimodal fNIRS-EEG recordings reveal new insights in neural activity during motor execution, observation, and imagery,” Scientific Reports, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-31609-5.

D. E. Callan, J. J. Torre–Tresols, J. Laguerta, and S. Ishii, “Shredding artifacts: extracting brain activity in EEG from extreme artifacts during skateboarding using ASR and ICA,” Frontiers in Neuroergonomics, vol. 5, Jun. 2024, doi: 10.3389/fnrgo.2024.1358660.

H. Lin, J. Fang, J. Zhang, X. Zhang, W. Piao, and Y. Liu, “Resting-State Electroencephalogram Depression Diagnosis Based on Traditional Machine Learning and Deep Learning: A Comparative Analysis,” Sensors, vol. 24, no. 21, 2024, doi: 10.3390/s24216815.

P. Walia et al., “Brain-behavior analysis of transcranial direct current stimulation effects on a complex surgical motor task,” Frontiers in Neuroergonomics, vol. 4, Jan. 2024, doi: 10.3389/fnrgo.2023.1135729.

B. J. Edelman et al., “Non-Invasive Brain-Computer Interfaces: State of the Art and Trends,” IEEE Reviews in Biomedical Engineering, vol. 18, pp. 26–49, 2025, doi: 10.1109/RBME.2024.3449790.

V. P. Kumaravel, M. Buiatti, E. Parise, and E. Farella, “Adaptable and Robust EEG Bad Channel Detection Using Local Outlier Factor (LOF),” Sensors, vol. 22, no. 19, p. 7314, Sep. 2022, doi: 10.3390/s22197314.

J. Gallego-Rudolf, M. Corsi-Cabrera, L. Concha, J. Ricardo-Garcell, and E. Pasaye-Alcaraz, “Preservation of EEG spectral power features during simultaneous EEG-fMRI,” Frontiers in Neuroscience, vol. 16, Dec. 2022, doi: 10.3389/fnins.2022.951321.

J. A. Desjardins, S. van Noordt, S. Huberty, S. J. Segalowitz, and M. Elsabbagh, “EEG Integrated Platform Lossless (EEG-IP-L) pre-processing pipeline for objective signal quality assessment incorporating data annotation and blind source separation,” Journal of Neuroscience Methods, vol. 347, p. 108961, Jan. 2021, doi: 10.1016/j.jneumeth.2020.108961.

F. Afdideh, M. Boozari, A. Ekhlasi, and A. M. Nasrabadi, “EEGChain: An Open-Access EEGLAB-based Toolbox for Building, Managing, Automating, and Reproducing Batch EEG Processing Pipelines,” in 2024 31st National and 9th International Iranian Conference on Biomedical Engineering (ICBME), pp. 20–27, Nov. 2024, doi: 10.1109/ICBME64381.2024.10895852.

Z. Hao, X. Zhai, D. Cheng, Y. Pan, and W. Dou, “EEG Microstate-Specific Functional Connectivity and Stroke-Related Alterations in Brain Dynamics,” Frontiers in Neuroscience, vol. 16, May 2022, doi: 10.3389/fnins.2022.848737.

G. Niso et al., “Good scientific practice in EEG and MEG research: Progress and perspectives,” NeuroImage, vol. 257, pp. 1–87, 2022, doi: 10.1016/j.neuroimage.2022.119056.

C. Qin et al., “EEGUnity: Open-Source Tool in Facilitating Unified EEG Datasets Toward Large-Scale EEG Model,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 33, pp. 1653–1663, 2025, doi: 10.1109/TNSRE.2025.3565158.

G. Ouyang and Y. Li, “Protocol for semi-automatic EEG preprocessing incorporating independent component analysis and principal component analysis,” STAR Protocols, vol. 6, no. 1, p. 103682, Mar. 2025, doi: 10.1016/j.xpro.2025.103682.

J. Shi et al., “EPAT: a user-friendly MATLAB toolbox for EEG/ERP data processing and analysis,” Frontiers in Neuroinformatics, vol. 18, May 2024, doi: 10.3389/fninf.2024.1384250.

C. R. Pernet, R. Martinez-Cancino, D. Truong, S. Makeig, and A. Delorme, “From BIDS-Formatted EEG data to sensor-space group results: A Fully Reproducible Workflow with EEGLAB and LIMO EEG,” Frontiers in Neuroscience, vol. 14, 2021, doi: 10.3389/fnins.2020.610388.

H. J. Huang and D. P. Ferris, “Non-invasive brain imaging to advance the understanding of human balance,” Current Opinion in Biomedical Engineering, vol. 28, 2023, doi: 10.1016/j.cobme.2023.100505.

J. D. Nielsen, O. Puonti, R. Xue, A. Thielscher, and K. H. Madsen, “Evaluating the influence of anatomical accuracy and electrode positions on EEG forward solutions,” NeuroImage, vol. 277, p. 120259, Aug. 2023, doi: 10.1016/j.neuroimage.2023.120259.

Z. T. Gemelli, M. Ayazi, and H. J. Lee, “The relationship between EEG theta/beta ratio and response inhibition in autogenous and reactive obsessions,” Psychiatry Research - Neuroimaging, vol. 348, 2025, doi: 10.1016/j.pscychresns.2025.111966.

G. Campos-Arteaga et al., “EEG subject-dependent neurofeedback training selectively impairs declarative memories consolidation process,” International Journal of Psychophysiology, vol. 203, p. 112406, Sep. 2024, doi: 10.1016/j.ijpsycho.2024.112406.

S. Garobbio, W.-H. Lin, M. Kunchulia, and M. H. Herzog, “To what extent do EEG measures reflect performance in perceptual tests?,” Behavioural Brain Research, vol. 488, p. 115602, Jun. 2025, doi: 10.1016/j.bbr.2025.115602.

G. Viviani and A. Vallesi, “EEG‐neurofeedback and executive function enhancement in healthy adults: A systematic review,” Psychophysiology, vol. 58, no. 9, Sep. 2021, doi: 10.1111/psyp.13874.

C.-H. Chuang, K.-Y. Chang, C.-S. Huang, and T.-P. Jung, “IC-U-Net: A U-Net-based Denoising Autoencoder Using Mixtures of Independent Components for Automatic EEG Artifact Removal,” NeuroImage, vol. 263, p. 119586, Nov. 2022, doi: 10.1016/j.neuroimage.2022.119586.

A. Vallesi et al., “Resting-state EEG spectral and fractal features in dementia with Lewy bodies with and without visual hallucinations,” Clinical Neurophysiology, vol. 168, pp. 43–51, 2024, doi: 10.1016/j.clinph.2024.10.004.

C.-H. Chuang, K.-Y. Chang, C.-S. Huang, and A.-M. Bessas, “Augmenting brain-computer interfaces with ART: An artifact removal transformer for reconstructing multichannel EEG signals,” NeuroImage, vol. 310, p. 121123, Apr. 2025, doi: 10.1016/j.neuroimage.2025.121123.

K. Al-Subari, S. Al-Baddai, A. M. Tomé, M. Goldhacker, R. Faltermeier, and E. W. Lang, “EMDLAB: A toolbox for analysis of single-trial EEG dynamics using empirical mode decomposition,” Journal of Neuroscience Methods, vol. 253, pp. 193–205, Sep. 2015, doi: 10.1016/j.jneumeth.2015.06.020.

C. Halkiopoulos, E. Gkintoni, A. Aroutzidis, and H. Antonopoulou, “Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations,” Diagnostics, vol. 15, no. 4, 2025, doi: 10.3390/diagnostics15040456.

Y. Jiao et al., “Deep graph learning of multimodal brain networks defines treatment-predictive signatures in major depression,” Molecular Psychiatry, Mar. 2025, doi: 10.1038/s41380-025-02974-6.

J. Medeiros et al., “Can EEG Be Adopted as a Neuroscience Reference for Assessing Software Programmers’ Cognitive Load?,” Sensors, vol. 21, no. 7, p. 2338, Mar. 2021, doi: 10.3390/s21072338.

M. Versaci and F. La Foresta, “EEG Data Analysis Techniques for Precision Removal and Enhanced Alzheimer’s Diagnosis: Focusing on Fuzzy and Intuitionistic Fuzzy Logic Techniques,” Signals, vol. 5, no. 2, pp. 343–381, 2024, doi: 10.3390/signals5020018.

M. Miyakoshi, “Artifact subspace reconstruction: a candidate for a dream solution for EEG studies, sleep or awake,” Sleep, vol. 46, no. 12, 2023, doi: 10.1093/sleep/zsad241.

I. Marriott Haresign et al., “Automatic classification of ICA components from infant EEG using MARA,” Developmental Cognitive Neuroscience, vol. 52, p. 101024, Dec. 2021, doi: 10.1016/j.dcn.2021.101024.

J. Rodrigues, M. Weiß, J. Hewig, and J. J. B. Allen, “EPOS: EEG Processing Open-Source Scripts,” Frontiers in Neuroscience, vol. 15, Jun. 2021, doi: 10.3389/fnins.2021.660449.

K. L. Lopez, A. D. Monachino, S. Morales, S. C. Leach, M. E. Bowers, and L. J. Gabard-Durnam, “HAPPILEE: HAPPE In Low Electrode Electroencephalography, a standardized pre-processing software for lower density recordings,” NeuroImage, vol. 260, p. 119390, Oct. 2022, doi: 10.1016/j.neuroimage.2022.119390.

K. Kyriaki, D. Koukopoulos, and C. A. Fidas, “A Comprehensive Survey of EEG Preprocessing Methods for Cognitive Load Assessment,” IEEE Access, vol. 12, pp. 23466–23489, 2024, doi: 10.1109/ACCESS.2024.3360328.

K. Kim, N. T. Duc, M. Choi, and B. Lee, “EEG microstate features for schizophrenia classification,” PLOS ONE, vol. 16, no. 5, p. e0251842, May 2021, doi: 10.1371/journal.pone.0251842.

L. Tait et al., “EEG microstate complexity for aiding early diagnosis of Alzheimer’s disease,” Scientific Reports, vol. 10, no. 1, p. 17627, Oct. 2020, doi: 10.1038/s41598-020-74790-7.

Z. Yang et al., “Music tempo modulates emotional states as revealed through EEG insights,” Scientific Reports, vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-92679-1.

N. Khaleghi et al., “EEG-based functional connectivity analysis of brain abnormalities: A systematic review study,” Informatics in Medicine Unlocked, vol. 47, p. 101476, 2024, doi: 10.1016/j.imu.2024.101476.

T. K. Murugan and A. Kameswaran, “Employing convolutional neural networks and explainable artificial intelligence for the detection of seizures from electroencephalogram signal,” Results in Engineering, vol. 24, p. 103378, Dec. 2024, doi: 10.1016/j.rineng.2024.103378.

D. M. Mateos, G. Krumm, V. Arán Filippetti, and M. Gutierrez, “Power Spectrum and Connectivity Analysis in EEG Recording during Attention and Creativity Performance in Children,” NeuroSci, vol. 3, no. 2, pp. 347–365, 2022, doi: 10.3390/neurosci3020025.

K. F. Walters et al., “Resting-State EEG Power Spectral Density Analysis Between Healthy and Cognitively Impaired Subjects,” Brain Sciences, vol. 15, no. 2, 2025, doi: 10.3390/brainsci15020173.

V. Mäki-Marttunen, A. Velinov, and S. Nieuwenhuis, “Strength of Low-Frequency EEG Phase Entrainment to External Stimuli Is Associated with Fluctuations in the Brain’s Internal State,” eneuro, vol. 12, no. 1, Jan. 2025, doi: 10.1523/ENEURO.0064-24.2024.

J. Noroozi, E. Rezayat, and M. R. A. Dehaqani, “Frontotemporal network contribution to occluded face processing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 48, 2024, doi: 10.1073/pnas.2407457121.

K. C. Nix, A. Oh, B. S. Goad, W. Wu, M. V. Lucas, and F. M. Baumer, “Detection of Language Lateralization Using Spectral Analysis of EEG,” Journal of Clinical Neurophysiology, vol. 41, no. 4, pp. 334–343, May 2024, doi: 10.1097/WNP.0000000000000988.

N. Thibault, A. Sharp, P. Albouy, and S. Grondin, “Perception of short, but not long, time intervals is modality specific: EEG evidence using vibrotactile stimuli,” Cerebral Cortex, vol. 35, no. 3, Mar. 2025, doi: 10.1093/cercor/bhaf051.

C. H. Chin, S. Abdullah, A. K. Ariffin, S. S. K. Singh, and A. Arifin, “A review of the wavelet transform for durability and structural health monitoring in automotive applications,” Alexandria Engineering Journal, vol. 99, pp. 204–216, Jul. 2024, doi: 10.1016/j.aej.2024.04.069.

N. D. Liyanagedera, C. A. Bareham, H. Kempton, and H. W. Guesgen, “Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline,” Brain Informatics, vol. 12, no. 1, p. 4, Dec. 2025, doi: 10.1186/s40708-025-00251-4.

C. L. Kok, C. K. Ho, T. H. Aung, Y. Y. Koh, and T. H. Teo, “Transfer Learning and Deep Neural Networks for Robust Intersubject Hand Movement Detection from EEG Signals,” Applied Sciences, vol. 14, no. 17, p. 8091, Sep. 2024, doi: 10.3390/app14178091.

V. P. Kumaravel, E. Farella, E. Parise, and M. Buiatti, “NEAR: An artifact removal pipeline for human newborn EEG data,” Developmental Cognitive Neuroscience, vol. 54, p. 101068, Apr. 2022, doi: 10.1016/j.dcn.2022.101068.

M. G. Wisniewski, C. N. Joyner, A. C. Zakrzewski, and S. Makeig, “Finding tau rhythms in EEG: An independent component analysis approach,” Human Brain Mapping, vol. 45, no. 2, 2024, doi: 10.1002/hbm.26572.

V. De Pascalis, “Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review,” Brain Sciences, vol. 14, 2024.

P. Bomatter, J. Paillard, P. Garces, J. Hipp, and D.-A. Engemann, “Machine learning of brain-specific biomarkers from EEG,” eBioMedicine, vol. 106, p. 105259, Aug. 2024, doi: 10.1016/j.ebiom.2024.105259.

C. Gil Ávila et al., “DISCOVER-EEG: an open, fully automated EEG pipeline for biomarker discovery in clinical neuroscience,” Scientific Data, vol. 10, no. 1, p. 613, Sep. 2023, doi: 10.1038/s41597-023-02525-0.

I. Rakhmatulin, M. S. Dao, A. Nassibi, and D. Mandic, “Exploring Convolutional Neural Network Architectures for EEG Feature Extraction,” Sensors, vol. 24, no. 3, 2024, doi: 10.3390/s24030877.

M. Gyurkovics, G. M. Clements, K. A. Low, M. Fabiani, and G. Gratton, “The impact of 1/f activity and baseline correction on the results and interpretation of time-frequency analyses of EEG/MEG data: A cautionary tale,” NeuroImage, vol. 237, p. 118192, Aug. 2021, doi: 10.1016/j.neuroimage.2021.118192.

D. Nolte et al., “Combining EEG and eye-tracking in virtual reality: Obtaining fixation-onset event-related potentials and event-related spectral perturbations,” Attention, Perception, and Psychophysics, vol. 87, no. 1, pp. 207–227, 2025, doi: 10.3758/s13414-024-02917-3.

R. Falach et al., “SleepEEGpy: a Python-based software integration package to organize preprocessing, analysis, and visualization of sleep EEG data,” Computers in Biology and Medicine, vol. 192, p. 110232, Jun. 2025, doi: 10.1016/j.compbiomed.2025.110232.

A. Fló, G. Gennari, L. Benjamin, and G. Dehaene-Lambertz, “Automated Pipeline for Infants Continuous EEG (APICE): A flexible pipeline for developmental cognitive studies,” Developmental Cognitive Neuroscience, vol. 54, p. 101077, Apr. 2022, doi: 10.1016/j.dcn.2022.101077.

C.-Y. Chang, S.-H. Hsu, L. Pion-Tonachini, and T.-P. Jung, “Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 4, pp. 1114–1121, Apr. 2020, doi: 10.1109/TBME.2019.2930186.

Y. Liu, T. Höllerer, and M. Sra, “SRI-EEG: State-Based Recurrent Imputation for EEG Artifact Correction,” Frontiers in Computational Neuroscience, vol. 16, May 2022, doi: 10.3389/fncom.2022.803384.

J. C. Hernandez-Pavon et al., “TMS combined with EEG: Recommendations and open issues for data collection and analysis,” Brain Stimulation, vol. 16, no. 2, pp. 567–593, 2023, doi: 10.1016/j.brs.2023.02.009.

G. M. Di Liberto et al., “Emergence of the cortical encoding of phonetic features in the first year of life,” Nature Communications, vol. 14, no. 1, 2023, doi: 10.1038/s41467-023-43490-x.

M. A. Bahhah and E. T. Attar, “Enhancing Epilepsy Seizure Detection Through Advanced EEG Preprocessing Techniques and Peak-to-Peak Amplitude Fluctuation Analysis,” Diagnostics, vol. 14, no. 22, 2024, doi: 10.3390/diagnostics14222525.

J. van Driel, C. N. L. Olivers, and J. J. Fahrenfort, “High-pass filtering artifacts in multivariate classification of neural time series data,” Journal of Neuroscience Methods, vol. 352, 2021, doi: 10.1016/j.jneumeth.2021.109080.

S. García-Ponsoda, A. Maté, and J. Trujillo, “Refining ADHD diagnosis with EEG: The impact of preprocessing and temporal segmentation on classification accuracy,” Computers in Biology and Medicine, vol. 183, 2024, doi: 10.1016/j.compbiomed.2024.109305.

M. Korochkina, L. Nickels, and A. Bürki, “What can we learn about integration of novel words into semantic memory from automatic semantic priming?,” Language, Cognition and Neuroscience, vol. 39, no. 4, pp. 455–488, 2024, doi: 10.1080/23273798.2024.2328586.

X. Li, Y. Leng, Z. Xiong, and J. Liu, “The Effect of Long-Term Learning of BaduanJin on Emotion Regulation: Evidence from Resting-State Frontal EEG Asymmetry,” Psychology Research and Behavior Management, vol. 17, pp. 2391–2401, Jun. 2024, doi: 10.2147/PRBM.S436506.

L. Wojtecki, C. Cont, N. Stute, A. Galli, C. Schulte, and C. Trenado, “Electrical brain networks before and after transcranial pulsed shockwave stimulation in Alzheimer’s patients,” GeroScience, vol. 47, no. 1, pp. 953–964, 2025, doi: 10.1007/s11357-024-01305-x.

Y. Chen et al., “Attentional network deficits in patients with migraine: behavioral and electrophysiological evidence,” The Journal of Headache and Pain, vol. 25, no. 1, p. 195, Nov. 2024, doi: 10.1186/s10194-024-01905-0.

J. S. Kim et al., “Resting-state EEG microstate analysis of internet gaming disorder and alcohol use disorder,” Dialogues in Clinical Neuroscience, vol. 26, no. 1, pp. 89–102, 2024, doi: 10.1080/19585969.2024.2432913.

C. Zhang et al., “Phase-Amplitude Coupling in Theta and Beta Bands: A Potential Electrophysiological Marker for Obstructive Sleep Apnea,” Nature and Science of Sleep, vol. 16, pp. 1469–1482, Sep. 2024, doi: 10.2147/NSS.S470617.

N. Zur, S. Shamay-Tsoory, A. Sterkin, and D. Fisher-Gewirtzman, “Perceived density and positive affect ratings of studio apartments: an EEG study,” Architectural Science Review, vol. 67, no. 1, pp. 78–88, 2023, doi: 10.1080/00038628.2023.2224284.

R. Kumari, A. Dybus, M. Purcell, and A. Vučković, “Motor priming to enhance the effect of physical therapy in people with spinal cord injury,” Journal of Spinal Cord Medicine, vol. 48, no. 2, pp. 312–326, 2025, doi: 10.1080/10790268.2024.2317011.

J. Ruiz de Miras, A. G. Casali, M. Massimini, A. J. Ibáñez-Molina, M. F. Soriano, and S. Iglesias-Parro, “FDI: A MATLAB tool for computing the fractal dimension index of sources reconstructed from EEG data,” Computers in Biology and Medicine, vol. 179, p. 108871, Sep. 2024, doi: 10.1016/j.compbiomed.2024.108871.

L. Pasqualette and L. Kulke, “Emotional expressions, but not social context, modulate attention during a discrimination task,” Cognition and Emotion, vol. 39, no. 5, pp. 1108–1126, Jul. 2025, doi: 10.1080/02699931.2024.2429737.

E. Niforatos, T. He, A. Vourvopoulos, and M. Giannakos, “Democratizing EEG: Embedding Electroencephalography in a Head-Mounted Display for Ubiquitous Brain-Computer Interfacing,” International Journal of Human-Computer Interaction, vol. 41, no. 11, pp. 7015–7039, 2025, doi: 10.1080/10447318.2024.2388368.

C. Simfukwe, S. S. A. An, and Y. Youn, “Contribution of Scalp Regions to Machine Learning-Based Classification of Dementia Utilizing Resting-State qEEG Signals,” Neuropsychiatric Disease and Treatment, vol. 20, pp. 2375–2389, Dec. 2024, doi: 10.2147/NDT.S486452.

A. Vourvopoulos, M. Fleury, D. A. Blanco-Mora, J. C. Fernandes, P. Figueiredo, and S. Bermúdez i Badia, “Brain imaging and clinical outcome of embodied VR-BCI training in chronic stroke patients: a longitudinal pilot study,” Brain-Computer Interfaces, vol. 11, no. 4, pp. 193–209, 2024, doi: 10.1080/2326263X.2024.2409463.

M. Niedernhuber, J. Streicher, B. Leggenhager, and T. A. Bekinschtein, “Attention and Interoception Alter Perceptual and Neural Pain Signatures-A Case Study,” Journal of Pain Research, vol. 17, pp. 2393–2405, 2024, doi: 10.2147/JPR.S449173.

S. S. Hsieh, A. L. McGowan, M. C. Chandler, and M. B. Pontifex, “Acute moderate-intensity aerobic exercise facilitates processing speed involving inhibitory control but not neuroelectric index of control process and cognitive integration,” International Journal of Sport and Exercise Psychology, 2024, doi: 10.1080/1612197X.2024.2365374.

M. Mondellini et al., “A Multimodal Approach Exploiting EEG to Investigate the Effects of VR Environment on Mental Workload,” International Journal of Human-Computer Interaction, vol. 40, no. 20, pp. 6566–6578, 2024, doi: 10.1080/10447318.2023.2258017.

S. Nagabhushan Kalburgi, T. Kleinert, D. Aryan, K. Nash, B. Schiller, and T. Koenig, “MICROSTATELAB: The EEGLAB Toolbox for Resting-State Microstate Analysis,” Brain Topography, vol. 37, no. 4, pp. 621–645, 2024, doi: 10.1007/s10548-023-01003-5.

C. Cannard, H. Wahbeh, and A. Delorme, “BrainBeats as an Open-Source EEGLAB Plugin to Jointly Analyze EEG and Cardiovascular Signals,” Journal of Visualized Experiments, vol. 2024, no. 206, 2024, doi: 10.3791/65829.

G. A. Taberna et al., “Large-scale analysis of neural activity and connectivity from high-density electroencephalographic data,” Computers in Biology and Medicine, vol. 178, p. 108704, Aug. 2024, doi: 10.1016/j.compbiomed.2024.108704.

L. Zhao et al., “Changes in P300 amplitude to negative emotional stimuli correlate with treatment responsiveness to sertraline in adolescents with depression,” Brain Research, vol. 1845, p. 149272, Dec. 2024, doi: 10.1016/j.brainres.2024.149272.

C. S. Knoph, R. B. Nedergaard, S. S. Olesen, L. Kuhlmann, and A. M. Drewes, “Spinal Excitability in Patients with Painful Chronic Pancreatitis,” Journal of Pain Research, vol. 16, pp. 2287–2298, Jul. 2023, doi: 10.2147/JPR.S408523.

D. K. Ornella, M. Noam, H. Shachar, B. Itai, C. K. Roi, and N. Mor, “Transcranial random noise stimulation combined with cognitive training for treating ADHD: a randomized, sham-controlled clinical trial,” Translational Psychiatry, vol. 13, no. 1, 2023, doi: 10.1038/s41398-023-02547-7.

S. Mazzeo et al., “PRedicting the EVolution of SubjectIvE Cognitive Decline to Alzheimer’s Disease With machine learning: the PREVIEW study protocol,” BMC Neurology, vol. 23, no. 1, 2023, doi: 10.1186/s12883-023-03347-8.

C. H. Wu, W. De Doncker, and A. Kuppuswamy, “Electroencephalography-Derived Functional Connectivity in Sensorimotor Networks in Post Stroke Fatigue,” Brain Topography, vol. 36, no. 5, pp. 727–735, 2023, doi: 10.1007/s10548-023-00975-8.

Y. Zhou et al., “Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability,” Journal of Headache and Pain, vol. 24, no. 1, 2023, doi: 10.1186/s10194-023-01551-y.

C. Simfukwe, Y. C. Youn, and S. S. An, “qEEG as Biomarker for Alzheimer’s Disease: Investigating Relative PSD Difference and Coherence Analysis,” Alzheimer’s & Dementia, vol. 20, no. S2, 2024, doi: 10.1002/alz.088587.

J. Gao, H. K. Leung, B. W. Y. Wu, J. Hung, C. Chang, and H. H. Sik, “Long-term practice of intuitive inquiry meditation modulates EEG dynamics during self-schema processing,” Heliyon, vol. 9, no. 9, 2023, doi: 10.1016/j.heliyon.2023.e20075.

B. Hbibi, C. Khiari, K. Wirsing, L. Mili, K. Baccar, and A. Mami, “Identifying and Removing Interference and Artifacts in Multifractal Signals With Application to EEG Signals,” IEEE Access, vol. 11, pp. 119090–119105, 2023, doi: 10.1109/ACCESS.2023.3325786.

M. Jianbiao, W. Xinzui, L. Zhaobo, L. Juan, Z. Zhongwei, and F. Hui, “EEG signal classification of tinnitus based on SVM and sample entropy,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 26, no. 5, pp. 580–594, 2023, doi: 10.1080/10255842.2022.2075698.

C. Simfukwe and Y. C. Youn, “CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment using qEEG,” Alzheimer’s & Dementia, vol. 19, no. S15, Dec. 2023, doi: 10.1002/alz.071129.

H. L. Coyle, N. W. Bailey, J. Ponsford, and K. E. Hoy, “A comprehensive characterization of cognitive performance, clinical symptoms, and cortical activity following mild traumatic brain injury (mTBI),” Applied Neuropsychology: Adult, vol. 32, no. 5, pp. 1430–1446, Sep. 2025, doi: 10.1080/23279095.2023.2286493.

R. C R and D. S. C P, “BCI-AMSH: A MATLAB based open-source brain computer interface assistive application for mental stress healing,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 6, 2023, doi: 10.1016/j.prime.2023.100323.

N. W. Bailey et al., “RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials,” Clinical Neurophysiology, vol. 149, pp. 202–222, May 2023, doi: 10.1016/j.clinph.2023.01.018.

G. Caetano, I. Esteves, A. Vourvopoulos, M. Fleury, and P. Figueiredo, “NeuXus open-source tool for real-time artifact reduction in simultaneous EEG-fMRI,” NeuroImage, vol. 280, 2023, doi: 10.1016/j.neuroimage.2023.120353.

F. Pellegrini, A. Delorme, V. Nikulin, and S. Haufe, “Identifying good practices for detecting inter-regional linear functional connectivity from EEG,” NeuroImage, vol. 277, 2023, doi: 10.1016/j.neuroimage.2023.120218.

H. Bi, S. Cao, H. Yan, Z. Jiang, J. Zhang, and L. Zou, “Resting State Functional Connectivity Analysis during General Anesthesia: A High-Density EEG Study,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, no. 1, pp. 3–13, 2022, doi: 10.1109/TCBB.2021.3091000.

V. Harwood, J. Preston, A. Baron, D. Kleinman, and N. Landi, “Event-Related Potentials to Speech Relate to Speech Sound Production and Language in Young Children,” Developmental Neuropsychology, vol. 47, no. 2, pp. 105–123, 2022, doi: 10.1080/87565641.2022.2036154.

F. Lopes et al., “Ensemble Deep Neural Network for Automatic Classification of EEG Independent Components,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 559–568, 2022, doi: 10.1109/TNSRE.2022.3154891.

F. Mushtaq et al., “Distinct Neural Signatures of Outcome Monitoring After Selection and Execution Errors,” Journal of Cognitive Neuroscience, vol. 34, no. 5, pp. 748–765, 2022, doi: 10.1162/jocn_a_01824.

P. Fuhrmeister, S. Madec, A. Lorenz, S. Elbuy, and A. Bürki, “Behavioural and EEG evidence for inter-individual variability in late encoding stages of word production,” Language, Cognition and Neuroscience, vol. 37, no. 7, pp. 902–924, 2022, doi: 10.1080/23273798.2022.2030483.

R. Pozharliev, D. Rossi, and M. De Angelis, “Consumers’ self-reported and brain responses to advertising post on Instagram: the effect of number of followers and argument quality,” European Journal of Marketing, vol. 56, no. 3, pp. 922–948, 2022, doi: 10.1108/EJM-09-2020-0719.

D. López-García, J. M. G. Peñalver, J. M. Górriz, and M. Ruz, “MVPAlab: A machine learning decoding toolbox for multidimensional electroencephalography data,” Computer Methods and Programs in Biomedicine, vol. 214, 2022, doi: 10.1016/j.cmpb.2021.106549.

Z. Niu et al., “Scale-free dynamics of microstate sequence in negative schizophrenia and depressive disorder,” Computers in Biology and Medicine, vol. 143, 2022, doi: 10.1016/j.compbiomed.2022.105287.

K. Thompson et al., “Sleep and second-language acquisition revisited: The role of sleep spindles and rapid eye movements,” Nature and Science of Sleep, vol. 13, pp. 1887–1902, 2021, doi: 10.2147/NSS.S326151.

R. M. Mehmood, H. J. Yang, and S. H. Kim, “Children Emotion Regulation: Development of Neural Marker by Investigating Human Brain Signals,” IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021, doi: 10.1109/TIM.2020.3011817.

Y. Zhou, Z. Liu, Y. Sun, H. Zhang, and J. Ruan, “Altered eeg brain networks in patients with acute peripheral herpes zoster,” Journal of Pain Research, vol. 14, pp. 3429–3436, 2021, doi: 10.2147/JPR.S329068.

L. Piper, A. Mileti, M. I. Prete, and G. Guido, “Pictorial warning labels as deterrents of alcohol abuse,” British Food Journal, vol. 123, no. 13, pp. 469–489, 2021, doi: 10.1108/BFJ-02-2021-0187.

R. Martínez-Cancino et al., “The open EEGLAB portal Interface: High-Performance computing with EEGLAB,” NeuroImage, vol. 224, 2021, doi: 10.1016/j.neuroimage.2020.116778.

V. Moliadze et al., “Significance of Beta-Band Oscillations in Autism Spectrum Disorders During Motor Response Inhibition Tasks: A MEG Study,” Brain Topography, vol. 33, no. 3, pp. 355–374, 2020, doi: 10.1007/s10548-020-00765-6.

X. Chen et al., “ReMAE: User-Friendly Toolbox for Removing Muscle Artifacts from EEG,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 5, pp. 2105–2119, 2020, doi: 10.1109/TIM.2019.2920186.

J. T. King, M. Prasad, T. Tsai, Y. R. Ming, and C. T. Lin, “Influence of Time Pressure on Inhibitory Brain Control during Emergency Driving,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 11, pp. 4408–4414, 2020, doi: 10.1109/TSMC.2018.2850323.

M. M. Schade, G. M. Mathew, D. M. Roberts, D. Gartenberg, and O. M. Buxton, “Enhancing slow oscillations and increasing N3 sleep proportion with supervised, non-phase-locked pink noise and other non-standard auditory stimulation during NREM sleep,” Nature and Science of Sleep, vol. 12, pp. 411–429, 2020, doi: 10.2147/NSS.S243204.

Y. Mahdid, U. Lee, and S. Blain-Moraes, “Assessing the Quality of Wearable EEG Systems Using Functional Connectivity,” IEEE Access, vol. 8, pp. 193214–193225, 2020, doi: 10.1109/ACCESS.2020.3033472.

D. Jing, D. Liu, S. Zhang, and Z. Guo, “Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment,” International Journal of Transportation Science and Technology, vol. 9, no. 4, pp. 366–376, 2020, doi: 10.1016/j.ijtst.2020.03.008.

L. N. Hirth, C. J. Stanley, D. L. Damiano, and T. C. Bulea, “Algorithmic localization of high-density EEG electrode positions using motion capture,” Journal of Neuroscience Methods, vol. 346, 2020, doi: 10.1016/j.jneumeth.2020.108919.

H. A. A. Mohammed, A. A. Kasim Jizany, I. M. Mahmood, and Q. K. Kadhim, “Predicting Alzheimer’s Disease Using a Modified Grey Wolf Optimizer and Support Vector Machine,” Ingenierie des Systemes d’Information, vol. 29, no. 2, pp. 669–676, 2024, doi: 10.18280/isi.290228.

K. Barnova et al., “Implementation of artificial intelligence and machine learning-based methods in brain–computer interaction,” Computers in Biology and Medicine, vol. 163, 2023, doi: 10.1016/j.compbiomed.2023.107135.

D. Truong, M. Sinha, K. U. Venkataraju, M. Milham, and A. Delorme, “A streamable large-scale clinical EEG dataset for Deep Learning,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2022-July, pp. 1058–1061, 2022, doi: 10.1109/EMBC48229.2022.9871708.

M. A. Boudewyn et al., “Managing EEG studies: How to prepare and what to do once data collection has begun,” Psychophysiology, vol. 60, no. 11, 2023, doi: 10.1111/psyp.14365.

J. Qiu, M. Chen, and G. Feng, “MBPPE: A Modular Batch Processing Platform for Electroencephalography,” Applied Sciences (Switzerland), vol. 14, no. 2, 2024, doi: 10.3390/app14020770.

M. Roshanaei, H. Norouzi, J. Onton, S. Makeig, and A. Mohammadi, “EEG-based functional and effective connectivity patterns during emotional episodes using graph theoretical analysis,” Scientific Reports, vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-86040-9.

V. Ronca et al., “Optimizing EEG Signal Integrity: A Comprehensive Guide to Ocular Artifact Correction,” Bioengineering, vol. 11, no. 10, 2024, doi: 10.3390/bioengineering11101018.

L. B. Ray, D. Baena, and S. M. Fogel, “‘Counting sheep PSG’: EEGLAB-compatible open-source matlab software for signal processing, visualization, event marking and staging of polysomnographic data,” Journal of Neuroscience Methods, vol. 407, 2024, doi: 10.1016/j.jneumeth.2024.110162.

A. Delorme et al., “EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing,” Computational Intelligence and Neuroscience, vol. 2011, 2011, doi: 10.1155/2011/130714.

R. K. Das, A. Martin, T. Zurales, D. Dowling, and A. Khan, “A Survey on EEG Data Analysis Software,” Sci, vol. 5, no. 2, 2023, doi: 10.3390/sci5020023.

N. S. Amer and S. B. Belhaouari, “EEG Signal Processing for Medical Diagnosis, Healthcare, and Monitoring: A Comprehensive Review,” IEEE Access, vol. 11, pp. 143116–143142, 2023, doi: 10.1109/ACCESS.2023.3341419.

S. Coelli et al., “Selecting methods for a modular EEG pre-processing pipeline: An objective comparison,” Biomedical Signal Processing and Control, vol. 90, 2024, doi: 10.1016/j.bspc.2023.105830.

Z. Jamil, A. Jamil, and M. Majid, “Artifact removal from EEG signals recorded in non-restricted environment,” Biocybernetics and Biomedical Engineering, vol. 41, no. 2, pp. 503–515, 2021, doi: 10.1016/j.bbe.2021.03.009.

E. Ebrahimzadeh et al., “Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function,” Frontiers in Systems Neuroscience, vol. 16, 2022, doi: 10.3389/fnsys.2022.934266.

S. Saha et al., “Progress in Brain Computer Interface: Challenges and Opportunities,” Frontiers in Systems Neuroscience, vol. 15, Feb. 2021, doi: 10.3389/fnsys.2021.578875.

S. Beniczky and D. L. Schomer, “Electroencephalography: basic biophysical and technological aspects important for clinical applications,” Epileptic Disorders, vol. 22, no. 6, pp. 697–715, 2020, doi: 10.1684/epd.2020.1217.

H. Zhang et al., “The applied principles of EEG analysis methods in neuroscience and clinical neurology,” Military Medical Research, vol. 10, no. 1, 2023, doi: 10.1186/s40779-023-00502-7.

E. Auger, E. M. Berry-Kravis, and L. E. Ethridge, “Independent evaluation of the harvard automated processing pipeline for Electroencephalography 1.0 using multi-site EEG data from children with Fragile X Syndrome,” Journal of Neuroscience Methods, vol. 371, p. 109501, Apr. 2022, doi: 10.1016/j.jneumeth.2022.109501.

B. He, H. Zhang, T. Qin, B. Shi, Q. Wang, and W. Dong, “A simultaneous EEG and eye-tracking dataset for remote sensing object detection,” Scientific Data, vol. 12, no. 1, 2025, doi: 10.1038/s41597-025-04995-w.

N. Janssen, M. van der Meij, P. J. López-Pérez, and H. A. Barber, “Exploring the temporal dynamics of speech production with EEG and group ICA,” Scientific Reports, vol. 10, no. 1, 2020, doi: 10.1038/s41598-020-60301-1.

C. M. Michel and B. He, “EEG source localization,” Handbook of Clinical Neurology, vol. 160, pp. 85–101, 2019, doi: 10.1016/B978-0-444-64032-1.00006-0.

L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, “ICLabel: An automated electroencephalographic independent component classifier, dataset, and website,” NeuroImage, vol. 198, pp. 181–197, 2019, doi: 10.1016/j.neuroimage.2019.05.026.

A. Zandbagleh, S. Sanei, L. Penalba-Sánchez, P. M. Rodrigues, M. Crook-Rumsey, and H. Azami, “Intra- and Inter-Regional Complexity in Multi-Channel Awake EEG Through Multivariate Multiscale Dispersion Entropy for Assessing Sleep Quality and Aging,” Biosensors, vol. 15, no. 4, 2025, doi: 10.3390/bios15040240.

G. Pellegrino et al., “Effects of Independent Component Analysis on Magnetoencephalography Source Localization in Pre-surgical Frontal Lobe Epilepsy Patients,” Frontiers in Neurology, vol. 11, Jun. 2020, doi: 10.3389/fneur.2020.00479.

S. F. Ahmed et al., “Deep learning modelling techniques: current progress, applications, advantages, and challenges,” Artificial Intelligence Review, vol. 56, no. 11, pp. 13521–13617, 2023, doi: 10.1007/s10462-023-10466-8.

J. Lopez-Calderon and S. J. Luck, “ERPLAB: an open-source toolbox for the analysis of event-related potentials,” Frontiers in Human Neuroscience, vol. 8, no. Apr, Apr. 2014, doi: 10.3389/fnhum.2014.00213.

C. Orovas, T. Sapounidis, C. Volioti, and E. Keramopoulos, “EEG in Education: A Scoping Review of Hardware, Software, and Methodological Aspects,” Sensors, vol. 25, no. 1, 2025, doi: 10.3390/s25010182.

Downloads

Published

2025-08-10

How to Cite

[1]
Y. Pamungkas, “A Comprehensive Review of EEGLAB for EEG Signal Processing: Prospects and Limitations”, J Robot Control (JRC), vol. 6, no. 4, pp. 2077–2094, Aug. 2025.

Issue

Section

Articles